Cambridge University Press 978-0-521-78830-4 - Stated Choice Methods: Analysis and Applications Jordan J. Louviere, David A. Hensher and Joffre D. Swait Table of Contents <u>More information</u>

Contents

	List of figures	page	1X
	List of tables		xi
	Acknowledgements		XV
1	Choosing as a way of life		1
	1.1 Introduction		1
	1.2 Decision making and choice behaviour		2
	1.3 Conceptual framework		8
	1.4 The world of choice is complex: the challenge ahead		10
	Appendix A1 Choosing a residential telecommunications bundle		19
_			
2	Introduction to stated preference models and methods		20
	2.1 Introduction		20
	2.2 Preference data come in many forms		20
	2.3 Preference data consistent with RUT		25
3	Choosing a choice model		34
5	3.1 Introduction		34
			35
	3.2 Setting out the underlying behavioural decision framework3.3 Random utility maximisation		37
	3.4 The basic choice model – a particular model formulation		57 44
	3.5 Statistical estimation procedure		44 47
	3.6 Model outputs		51
	3.7 Behavioural outputs of choice models		57
	3.8 A simple illustration of the basic model		62
	3.9 Linking to the later chapters		62 65
			66
	Appendix A3 Maximum likelihood estimation technique		00
	Appendix B3 Linear probability and generalised least squares models		70
	models		72

Contents

4	Experimental design	83
	4.1 Introduction	83
	4.2 Factorial designs	84
	4.3 Fractional factorial designs	89
	4.4 Practical considerations in fractional designs	94
	4.5 Design strategies for simple SP experiments	96
5	Design of choice experiments	111
	5.1 Introduction	111
	5.2 Multiple choice experiments	112
	5.3 General design principles for choice experiments	119
	5.4 Availability designs for labelled alternatives	126
	Appendix A5 Some popular choice designs	131
6	Relaxing the IID assumption - introducing variants of the MNL model	138
	6.1 Setting the context for behaviourally more plausible models	138
	6.2 Deriving the mean and variance of the extreme value type 1	
	distribution	142
	6.3 Introduction to the nested logit model	144
	6.4 Empirical illustration	154
	6.5 The nested logit model – empirical examples	162
	6.6 Tests of overall model performance for nested models	176
	6.7 Conclusions and linkages between the MNL/NL models	
	and more complex models	182
	Appendix A6 Detailed characterisation of the nested logit model	183
	Appendix B6 Advanced discrete choice methods	189
7	Complex, non-IID multiple choice designs	213
	7.1 Introduction	213
	7.2 Designs for alternatives with non-constant error variances	214
	7.3 Designs for portfolio, bundle or menu choices	215
	7.4 Summary	226
8	Combining sources of preference data	227
	8.1 Appreciating the opportunity	227
	8.2 Characteristics of RP and SP data	228
	8.3 The mechanics of data enrichment	233
	8.4 Is it always possible to combine preference data sources?	243
	8.5 A general preference data generation process	248
	8.6 Summary	251
9	Implementing SP choice behaviour projects	252
	9.1 Introduction	252
	9.2 Components of the choice process	252

CAMBRIDGE

		Contents	vii
	9.3 The steps in an SP choice study		255
	9.4 Summary		282
10	Marketing case studies		283
	10.1 Introduction		283
	10.2 Case study 1: preference heterogeneity vs. variance		
	heteroscedasticity		283
	10.3 Case study 2: choice set generation analysis		292
	10.4 Summary		297
11	Transportation case studies		298
	11.1 Introduction		298
	11.2 Case study 1: introducing a new alternative: high spe		
	and the random effects HEV model in an SP-RP cost		299
	11.3 Case study 2: high speed rail and random effects HE	EV in a	
	switching context		301
	11.4 Case study 3: valuation of travel time savings and un	rban route	
	choice with tolled options in an SP context		306
	11.5 Case study 4: establishing a fare elasticity regime for		
	passenger transport: non-concession commuters with	I SP-RP	215
	and HEV		315 328
	11.6 Conclusions to chapter		328
12	Environmental valuation case studies		329
	12.1 Introduction		329
	12.2 Environmental valuation: theory and practice		329
	12.3 Case study 1: use values – recreational hunting site c	choices	331
	12.4 Case study 2: passive use values		343
	12.5 The passive use value controversy: can SP help?		350
	12.6 Conclusions		352
13	Cross validity and external validity of SP models		354
	13.1 Introduction		354
	13.2 A brief review of preference model comparisons		356
	13.3 Preference regularities		357
	13.4 Procedures for testing preference regularity		363
	13.5 Empirical case studies and results		369
	13.6 Summary and conclusions		379
	References		382
	Index		399

Cambridge University Press 978-0-521-78830-4 - Stated Choice Methods: Analysis and Applications Jordan J. Louviere, David A. Hensher and Joffre D. Swait Table of Contents <u>More information</u> Cambridge University Press 978-0-521-78830-4 - Stated Choice Methods: Analysis and Applications Jordan J. Louviere, David A. Hensher and Joffre D. Swait **Table of Contents** More information

Figures

1.1	Overview of the consumer's choice process	page	8
1.2	Complex decision making and the choice process		9
1.3	Functional relationships implied by the framework		9
1.4	Overview of book structure		11
1.5	Example of a choice experiment		14
A1.1	Choosing a residential telecommunications bundle		19
2.1	The technological frontier and the roles of RP and SP data		23
2.2	Travel alternatives in a stated choice experiment		25
3.1	An example of a CDF and its PDF		41
A3.1	MLE of the MNL model using the Newton-Raphson technique		71
4.1	Possible functional forms for main effects		99
4.2	Marginal means vs. fare levels	1	09
6.1	An hierarchical model structure	1	45
6.2	A three-level nested structure	1	52
6.3	Descriptors for a three-level NL tree	1	64
6.4	Estimating a two-level model to allow for unrestricted scale		
	parameters within a level	1	73
6.5	A three-level NL model	1	75
6.6	Air \leftrightarrow land logit model	1	80
6.7	Private \leftrightarrow public logit model	1	81
6.8	Others \leftrightarrow public logit model	1	81
6.9	MNL logit model	1	81
8.1	Price history for two yogurt brands	2	28
8.2	RP and SP data generation process	2	29
8.3	Enrichment paradigm 1	2	.32
8.4	Enrichment paradigm 2	2	33
8.5	Visual test for parameter vector equality across two preference data	a	
	sets	2	35
8.6	The effect of the scale parameter on choice probability	2	36
8.7	Parameter plot for example data combination exercise	2	39

8.8	Plat of relative scale factor vs. log likelihood	240
	Plot of relative scale factor vs. log likelihood	
8.9	A two-level, two-nest NMNL model	241
8.10	Combining RP and SP data using the NMNL model	242
8.11	NMNL generalisation for multiple data source combination	243
8.12	City 1 RP and SP MNL model common parameter comparison	246
9.1	Example choice set	260
9.2	Minimum sample requirement for SRS	263
9.3	Tree specifications for rental agency and vehicle size NL choice	
	model	266
9.4	Compact vehicle utility as a function of price	273
9.5	Compact vehicle piecewise linear utility as a function of price	277
9.6	Final NL tree structure	277
9.7	The relationship between point and arc elasticities	279
9.8	Price equivalents for auto rental and car size choice (based on utility	
	functions)	281
10.1	Case study 1 SP task layout	284
10.2	Selection of S	288
10.3	Radar plots of 2-class taste parameters (90 per cent confidence level)	290
10.4	Typical choice scenario for brand/price task	293
10.5	Predicted choice set size distribution	295
10.6	Predicted probability of inclusion in some choice set	296
11.1	The role of the quadratic term	310
13.1	Conceptual framework for preference data comparison	359
13.2	Preference regularity hypothesis generated by definition PR	360
13.3	Parameter plot	366

Cambridge University Press 978-0-521-78830-4 - Stated Choice Methods: Analysis and Applications Jordan J. Louviere, David A. Hensher and Joffre D. Swait Table of Contents More information

Tables

2.1	Discrete choice of commuting option	page	27
2.2	Acceptance or rejection of commuting options		28
2.3	Complete preference ranking of commuting options		30
2.4	Scale rating of commuting options		30
2.5	Creating choice sets and coding choices from response data		32
3.1	An example of a prediction success table		57
3.2	Parameter estimates for the illustrative example		63
4.1	Example factional design		85
4.2	The 2 × 2 (or 2^2) and 2 × 2 × 2 (or 2^3) factorial designs		85
4.3	Standard design notation		90
4.4	Defining relations for 2 ³ designs		91
4.5a	Two $1/2$ fractions of the 2^3 factorial		93
4.5b	Orthogonally coded $1/2$ fraction of the 2^3 factorial		93
4.6a	Combining two designs to capture most sources of variance		97
4.6b	Eliminating or reducing profile duplication in two designs		98
4.7	Example attributes for airline flights		99
4.8	Effects codes for as many as five attribute levels		100
4.9	Attributes and levels for flights from Boston to Los Angeles		104
4.10	'Main effects only' design codes for the flight example		105
4.11	Matching design codes with levels to construct profiles		106
4.12	Hypothetical 'yes/no' responses to flight profiles		106
4.13	Results of binary logistic regression of flight profiles		107
4.14	Odds and log odds responses to 'yes/no' flight profiles		108
4.15	Marginal means calculated from table 4.14		109
5.1a	An example of a simple presence/absence design		116
5.1b	Presence/absence design details		117
5.2	An example of a generic choice experiment		119
5.3	Details of multiple choice designs based on factorials		121
5.4	Example of a labelled design and resulting attribute differences		125
5.5a	A labelled experiment with constant third option		125

xii List of tables

5.5b	Treatment of constant option in table 5.5a	125
5.6	Attribute level differences resulting from random design	126
5.7a	Availability design plus foldover	128
5.7b	Subdesign for alternative 1 'present'	128
5.8	Orthogonal fraction of 2^J design used for nesting conditions	130
5.9	Attribute availability nesting based on fractional design	131
6.1	Two observations from the intercity mode data set	155
6.2	Summary results for a simple multinomial logit model	157
6.3	Estimated GC elasticities for basic logit model	159
6.4	Basic MNL model with choice-based weights	160
6.5	Comparison of GC marginal effects for unweighted and choice-based	
	MNL models	161
6.6	Results of an IIA test for an MNL model	162
6.7	Summary of alternative model specifications for a non-degenerate	
	NL model tree	169
6.8	Summary of alternative model specifications for a partially	
	degenerate NL model tree	170
6.9	A three-level NL model estimated as FIML	176
6.10	Parameter estimates for the tests: example 1	182
6.11	Parameter estimates for the tests: example 2	182
B6.1	Heteroscedastic extreme value model	193
B6.2	Probability weighted HEV GC elasticities compared with MNL	
	elasticities	194
B6.3	Covariance heterogeneity logit model	197
B6.4	Comparison of GC elasticities of covariance heterogeneity, NL	
	and MNL models	198
B6.5	Random parameter logit model	202
B6.6	Multinomial probit results	208
B6.7	Probability weighted MNP, HEV and MNL GC elasticities	209
B6.8	Alternative error processes in discrete-choice models:	
	repeated stated choices	211
7.1	Fractional factorial designs for composite choices	216
7.2	Suggested useful nested specifications	217
7.3	Choice sets constructed from 2^3 factorial + foldover	219
7.4	Master sampling design to determine menu item levels in each	
	foldover	220
7.5	1st and 9th foldover designs based on master sampling design	221
7.6	Using separate prices to make choice sets from 2^{5-3}	
	factorial + foldover	222
7.7	Choice sets designed with an orthogonal fraction of $2^2 \times 4^4$ factorial	223
7.8	Choice sets designed with 2^{4-1} fraction + foldover (+ orthogonal	
-	two-way interactions of components and price)	223
7.9	Constant/variable master plan: 2^{6-3} main effects design + foldover	225
7.10	Subdesign when City A is variable	225

8.1	Fixed grid search results	239
8.2	A comparison of stand-alone and joint models	245
8.3	Comparison of stand-alone and joint models for courier service choice	246
9.1	Attributes and levels for example study	259
9.2	Choice probability estimation example	264
9.3a	Dummy and contrast codings for compact vehicles	267
9.3b	Dummy and contrast codings for full-size vehicles	267
9.4a	Orthogonal polynomial coding formulae	268
9.4b	OP coding for compact car price obtained by applying formulae in	
	table 9.4a	268
9.5	Estimation results for auto rental agency and vehicle size choice	270
9.6	Final NL model for auto rental agency and vehicle size choice	276
9.7		278
10.1	Attribute glossary	285
	Item list	286
10.3	Latent 2-class parameter estimates	288
	CovHet HEV parameter estimates	291
10.5	MNL and IAL parameter estimates	294
10.6	Most likely choice sets	297
11.1	Heteroscedastic extreme value model estimation	300
11.2	The attribute set and levels for HSR	302
11.3	The final set of choice sets for Speedrail for full Sydney-Canberra trip	303
11.4	Empirical results for the current business air market	304
11.5	Direct and cross share fare elasticities for Air-HSR business market	305
11.6	Route choice alternatives	308
11.7	The set of choice sets	308
11.8	The construction of a quadratic polynomial	309
11.9	The orthogonal design for the route choice experiment	311
11.10	The partial correlation structure of actual attribute levels	313
11.11	The route choice model results and time values	314
11.12	Behavioural VTTS derived from a valuation function	315
11.13	Illustrative set of show cards for the SP experiment 1: bus or train	
	for a short trip	319
11.14	The stated choice experiment fare categories and levels	320
11.15	Summary statistics of estimation sample	322
11.16	HEV model: joint estimation of SP and RP choices to evaluate the	
	presence of an income effect	323
11.17	MNL model: joint estimation of SP and RP choices	324
11.18	Direct and cross share elasticities	327
12.1	Attributes used in the moose hunting stated preference experiment	334
12.2	Example choice set from the moose hunting site task	335
12.3	Estimation results for moose hunting site choice task	338
12.4	Attributes and levels used in the caribou passive use value	
	experiments	346

List of tables

xiii

xiv List of tables

12.5	Choice task for woodland caribou-passive use value case study	347
12.6	Coefficients of linear and quadratic caribou choice experiment MNL	
	models	348
13.1	Empirical case studies	372
13.2	Principal components results for example 10	378