Measures, Shape, Space and Handling Data

CAMBRIDGE UNIVERSITY PRESS

The Edinburgh Building, Cambridge CB2 2RU, UK
40 West 20th Street, New York, NY 10011-4211, USA
477 Williamstown Road, Port Melbourne, Vic 3207, Australia
Ruiz de Alarcón 13, 28014 Madrid, Spain
Dock House, The Waterfront, Cape Town 8001, South Africa
http://www.cambridge.org
© Cambridge University Press 2001
First published 2001
Reprinted 2005
Printed in the United Kingdom at the University Press, Cambridge
Typefaces Frutiger, Helvetica, Minion, Swift System QuarkXPress ${ }^{\circledR} 4.03$
A catalogue record for this book is available from the British Library
ISBN 0521784964 paperback
Text illustration Gary Rees
General editors for Cambridge Mathematics Direct
Sandy Cowling, Jane Crowden, Andrew King, Jeanette Mumford
Writing team for Measures, Shape, Space and Handling Data 6
Anne Barber, Salliann Coleman, Roger Gee, Claire Grigson, Gill Hatch, Sue Hood, Bob La Roche, Clare Lauritzen, Kerry Lundy, Jeanette Mumford, Mary Nathan, Madeline Swarbrick, Allison Toogood, Elizabeth Toohig, Jane Webster, Joanne Woodward

The writers and publishers would like to thank the many schools and individuals who trialled lessons for Cambridge Mathematics Direct.

NOTICE TO TEACHERS
It is illegal to reproduce any part of this work in material form (including photocopying and electronic storage) except under the following circumstances:
(i) where you are abiding by a licence granted to your school or institution by the Copyright Licensing Agency;
(ii) where no such licence exists, or where you wish to exceed the terms of a licence, and you have gained the written permission of Cambridge University Press;
(iii) where you are allowed to reproduce without permission under the provisions of Chapter 3 of the Copyright, Designs and Patents Act 1988.

> Abbreviations and symbols
> IP Interactive picture CM Copymaster
> A is practice work B develops ideas
> C is extension work
> \star if needed, helps with work in A
> A red margin indicates that activities are teacher-led.
> A green margin indicates that activities are independent.

Contents

Measures (M)
M1 Length
M1.1 Rounding distances and lengths 5
M1.2 Converting kilometres to smaller units 6
M1.3 Metric and imperial units 7
M1.4 Reading scales and solving problems 9
M2 Mass
M2.1 Relationships and rounding 11
M2.2 Converting between kilograms and grams 14
M2.3 Metric and imperial units 17
M2.4 Reading scales and solving problems 20
M3 Capacity
M3.1 Litres and millilitres 24
M3.2 Rounding capacity measurements 26
M3.3 Metric and imperial capacities 28
M3.4 Capacity problems 30
M4 Area and perimeter
M4.1 Perimeters of compound shapes 32
M4.2 Areas of compound shapes 33
M4.3 Surface areas 35
M4.4 Areas of isosceles triangles 37
M4.5 Area of right-angled triangles 39
M5 Time
M5.1 World time zones 41
M5.2 Time zones and date changes 43
M5.3 Solving time problems 45
Shape and space (SS)
SS1 Properties of 2-D shapes
SS1.1 Parallelograms and rhombuses 47
SS1.2 Trapeziums and kites 49
SS1.3 Diagonals 51
SS1.4 Circles 53
SS1.5 Tangrams 54
SS1.6 Reasoning about shapes 55
SS2 Properties of 3-D shapes
SS2.1 Properties of 3-D shapes 57
SS2.2 Nets for closed cubes 58
SS2.3 Visualising 3-D shapes 59
SS3 Reflective symmetry
SS3.1 Reflections in 1 mirror line 61
SS3.2 Reflections in 2 mirror lines 62
SS3.3 Reasoning about symmetry 63
SS4 Translation
SS4.1 Translations and 3-D shapes 64
SS4.2 Translating patterns 66
SS4.3 Translations in 4 quadrants 68
SS4.4 Translating and tessellating 70
SS5 Position and direction
SS5.1 Intersecting lines 71
SS5.2 Beyond the first quadrant 73
SS5.3 Plotting co-ordinates in all 4 quadrants 74
SS5.4 Patterns in co-ordinates 76
SS6 Angle and rotation
SS6.1 Measuring angles 77
SS6.4 Reflex angles 78
Handling data (HD)
HD1 Probability
HD1.2 Finding probabilities 80
HD1.3 Using a 0-1 scale for probabilities 83
HD1.4 Experimenting to find probabilities 85
HD2 Organising and interpreting data 1
HD2.2 Mean, median, mode and range 1 87
HD2.3 Pie charts 1 89
HD2.4 Line graphs 1 91
HD3 Organising and interpreting data 2
HD3.1 Testing a hypothesis 2 92
HD3.2 Mean, median, mode and range 2 93
HD3.3 Pie charts 2 95
HD3.4 Line graphs 2 96
HD4 Organising and interpreting data 3
HD4.2 Mean, median, mode and range 3 99
HD4.3 Interpreting and comparing data 101
HD4.4 Line graphs 3 103

m1.1 Rounding distances and lengths

Key idea

In certain situations an approximate measure, to the nearest whole unit or tenth of a unit is needed.

Write the distance to each place to the nearest kilometre.

Spectators at a football match compare the distances they have travelled.
Round to the nearest kilometre.
a $\quad 126.78 \mathrm{~km}$
b. 142.35 km
C
78.49 km
d 0.83 km
e 28.29 km

Jane measured the thickness of some library books.
Roughly how many centimetres are they to the nearest whole centimetre?
a
47 mm
b 25 mm
C 12 mm
d 36 mm
e 109 mm

Do CM 1.
B1 Cyclists travelled these distances in training.
Approximately how far did they cycle to the nearest kilometre?

a 7628 m b 13509 m c $9398 \mathrm{~m} \quad$ d 14901 m e 7489 m

B2 Anil measured some objects in his classroom.
About how many metres are they to the nearest tenth of a metre?

$$
1 \mathrm{~cm}=0.01 \mathrm{~m}
$$

a 113 cm
b 45 cm
C 67 cm
d 26 cm
e 98 cm

C1 An experiment to grow plants produced the following results.
Round the heights of each plant to the nearest tenth of a metre.
a $\quad 280 \mathrm{~mm}$
b 576 mm
C 231 mm
d 84 mm
e 347 mm

m1.2 Converting kilometres to smaller units

> | Key | 1 m is one thousandth of 1 km. |
| :---: | :---: |
| idea | |

A1 A chart gives the height above sea level of several towns.
Write these heights in metres.
a 0.003 km
b. 0.007 km
C 0.016 km
d 0.080 km
e 0.668 km
0.900 km

You need 5 objects smaller than your hand to measure.
Record your measurements in centimetres and then convert them to metres.

B1 Which of the two measurements is higher above sea level?
a 3.59 km or 450 m
b 2978 m or 4.66 km
C $\quad 0.04 \mathrm{~km}$ or 20 m
d 70 m or 0.01 km

Arrange these lengths in order from smallest to largest.

Convert all lengths to metres.

$$
\begin{array}{lllll}
0.041 \mathrm{~m} & 0.003 \mathrm{~km} \quad 0.1 \mathrm{~cm} \quad 5.082 \mathrm{~m} \quad 128 \mathrm{~mm} \quad 491 \mathrm{~cm}
\end{array}
$$

You need 5 objects less than 100 mm long and a ruler marked only in millimetres.
Measure your objects in millimetres then convert to metres.

m1.3 Metric and imperial units

Key A mile is about 1600 m .8 km is about 5 miles.
idea
A metre is longer than a yard. A metre is about 3 feet 3 inches.

You need your graph and a partner.

British drivers travelling in Europe need to convert distances given in kilometres into miles. Use your graph to convert the distances in the following problems.

Convert these distances into kilometres.
a 10 miles
b 25 miles
C 50 miles
d 75 miles

Use your graph to find which is further:
a 5 miles or 6 km
b 28 km or 15 miles
C 56 km or 36 miles d 81 km or 49 miles

Complete these, choosing from the list below.
a 12 inches =
b. 2 feet $=$
C $\frac{1}{2}$ foot $=$
d 1 yard $=$
e 1 metre =
6 inches 3 feet 1 foot 24 inches $6 \frac{1}{2}$ feet 3 feet 3 inches
a List 3 classroom objects that you would measure in inches and 3 objects that you would measure in feet.
b What imperial unit would you use to measure the height of a door?

Put these distances in order, from shortest to longest:
10 miles $\quad 45 \mathrm{~km} \quad 15$ miles $\quad 20 \mathrm{~km} \quad 25$ miles 15 km

a John travelled 11 miles. How many kilometres did he go?
b Calais is 38 km away. How far is this in miles?
C It is 95 km to Paris. Morag has travelled 56 miles. How much further has she to go?
d Lenny drives 21 miles from his campsite to Beauville. Then he drives 18 miles to the beach and goes straight home to the campsite from there. If his total journey was about 75 km that day, what is the distance in kilometres from the campsite to the beach?

Choose from <, >, = to complete these questions.

Q 6 feet $\square 2 \mathrm{~m}$	$\mathrm{~b} \quad 3 \mathrm{~m} \square \mathrm{q}$ feet 9 inches
C 3 yards $\square 11$ feet	d 13 feet $\square 4$ metres
e $20 \mathrm{~m} \square 20$ yards	f 1 foot $\square 20$ inches

Remember: 1 foot = 12 inches 1 yard $=3$ feet

Make up 3 of your own number problems using imperial and metric units.

Key
idea

A mile is about 1600 m .8 km is about 5 miles.
A metre is longer than a yard. A metre is about 3 feet 3 inches.

m1.4 Reading scales and solving problems

Key idea

 You need to choose the right scale to measure in metric or imperial units.A class measured rainfall using rain gauges they made themselves. Some scales were in inches, others in centimetres. Use the scale to answer these questions.
a On Monday there was 1 inch of rain. How many centimetres is this?
b On Tuesday there was $\frac{1}{2}$ inch of rain. How many centimetres is this?

C On Wednesday and Thursday it didn't rain, but on Friday there were $1 \frac{1}{4}$ inches of rain.
How many centimetres is this?
d What was the total rainfall for these 5 days in centimetres?

The next week it rained 1.7 cm on Monday. If it rained the same amount every day until Friday, how many inches of rain fell on these 5 days?

If the total rainfall for 10 days was 5 inches, what was the average rainfall each day? Give your answers in centimetres.

The third week Nadim measured $1.8 \mathrm{~cm}, 0.4 \mathrm{~cm}, 5.1 \mathrm{~cm}, 0.3 \mathrm{~cm}$ and 2.6 cm of rain.
a What was the total rainfall for the 5 days in centimetres?
b How much is this to the nearest $\frac{1}{4}$ inch?
C The school weather station recorded exactly $1 \frac{1}{2}$ inches of rainfall. Which child had the most accurate rain gauge?

Josh $3.5 \mathrm{~cm} \quad$ Kay $3.8 \mathrm{~cm} \quad$ Mansi $3.4 \mathrm{~cm} \quad$ Nadim 3.6 cm
In the fourth week, Monday had 1.2 cm of rain, Tuesday $\frac{3}{8}$ inch, Wednesday 2.4 cm , Thursday $\frac{7}{8}$ inch and Friday 2.5 cm .
a Which day did it rain the most?
b Which day did it rain the least?
C What was the total rainfall in centimetres?
d What was the total rainfall in inches?

The average rainfall for the fifth week was $\frac{3}{4}$ inch of rain over the 5 days. Rainfall on Monday was 1.1 cm below average, on Tuesday 0.5 cm above average, on Wednesday 1.6 cm above average and on Thursday 1.0 cm below average.
a Give the total rainfall in centimetres for week 5.
b Work out the rainfall in inches each day that week including Friday.

A bow is made from 6 inches of ribbon. How many bows can be made from 3 m of ribbon?

There are 2.54 cm to 1 inch. 1 yard is 36 inches. About how many centimetres are there in 1 yard?

