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Introduction 

Why asymptotic statistics? The use of asymptotic approximations is two-

fold. First, they enable us to find approximate tests and confidence regions. 

Second, approximations can be used theoretically to study the quality 

(efficiency) of statistical procedures. 

1.1 Approximate Statistical Procedures 

To carry out a statistical test, we need to know the critical value for the test statistic. In 

most cases this means that we must know the distribution of the test statistic under the 

null hypothesis. Sometimes this is known exactly, but more often only approximations are 

available. This may be because the distribution of the statistic is analytically intractable, 

or perhaps the postulated statistical model is considered only an approximation of the true 

underlying distributions. In both cases the use of an approximate critical value may be fully 

satisfactory for practical purposes. 

Consider for instance the classical t -test for location. Given a sample of independent 

observations XJ, ... , Xn , we wish to test a null hypothesis concerning the mean JL = EX. 

The t-test is based on the quotient of the sample mean Xn and the sample standard deviation 

Sn. If the observations arise from a normal distribution with mean JLo, then the distribution 

of In(Xn -lLo)/ Sn is known exactly: It is a t-distribution with n - 1 degrees of freedom. 

However, we may have doubts regarding the normality, or we might even believe in a 

completely different model. If the number of observations is not too small, this does not 

matter too much. Then we may act as if In(Xn - lLo)/Sn possesses a standard normal 

distribution. The theoretical justification is the limiting result, as n --+ 00, 

(
In(Xn - JL) ) 

sup P II- ::: x - <l>(x) --+ 0, 
x Sn 

provided the variables Xi have a finite second moment. This variation on the central limit 

theorem is proved in the next chapter. A "large sample" level a test is to reject Ho : IL = JLo 

if I In(Xn - lLo)/Snl exceeds the upper a/2 quantile of the standard normal distribution. 

Table 1.1 gives the significance level of this test if the observations are either normally or 

exponentially distributed, and a = 0.05. For n ::: 20 the approximation is quite reasonable 

in the normal case. If the underlying distribution is exponential, then the approximation is 

less satisfactory, because of the skewness of the exponential distribution. 
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Introduction 

Table 1.1. Level of the test with critical region 

IJil(Xn -lLo)/Snl > 1.96 if the observations 
are sampled from the normal or 

exponential distribution. 

Nonnal ExponentialG 

5 0.122 0.19 
10 0.082 0.14 
15 0.070 0.11 
20 0.065 0.10 
25 0.062 0.09 
50 0.056 0.07 

100 0.053 0.06 

G The third column gives approximations based on 10,000 

simulations. 

In many ways the t-test is an uninteresting example. There are many other reasonable 

test statistics for the same problem. Often their null distributions are difficult to calculate. 

An asymptotic result similar to the one for the t-statistic would make them practically 

applicable at least for large sample sizes. Thus, one aim of asymptotic statistics is to derive 

the asymptotic distribution of many types of statistics. 

There are similar benefits when obtaining confidence intervals. For instance, the given 

approximation result asserts that ,In (X n - 11) / Sn is approximately standard normally dis-

tributed if 11 is the true mean, whatever its value. This means that, with probability approx-

imately 1 - 2a, 

,In(Xn -11) 
-Za < < Za· 

- Sn -

This can be rewritten as the confidence statement 11 = X n ± Za Sn / ,In in the usual manner. 

For large n its confidence level should be close to 1 - 2a. 

As another example, consider maximum likelihood estimators en based on a sample of 

size n from a density P9. A major result in asymptotic statistics is that in many situations 

,In (en - 0) is asymptotically normally distributed with zero mean and covariance matrix the 

inverse of the Fisher information matrix 19 • If Z is k-variate normally distributed with mean 

zero and nonsingular covariance matrix then the quadratic form Z possesses a 

chi-square distribution with k degrees of freedom. Thus, acting as if ,In(en - 0) possesses 

an Nk(O, 19-
1) distribution, we find that the ellipsoid 

{o : (0 - enllfj. (0 - en) X!a } 

is an approximate 1 - a confidence region, if Xl,a is the appropriate critical value from the 

chi-square distribution. A closely related alternative is the region based on inverting the 

likelihood ratio test, which is also based on an asymptotic approximation. 

1.2 Asymptotic Optimality Tbeory 

For a relatively small number of statistical problems there exists an exact, optimal solution. 

For instance, the Neyman-Pearson theory leads to optimal (uniformly most powerful) tests 
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in certain exponential family models; the Rao-Blackwell theory allows us to conclude that 

certain estimators are of minimum variance among the unbiased estimators. An important 

and fairly general result is the Cramer-Rao bound for the variance of unbiased estimators, 

but it is often not sharp. 

If exact optimality theory does not give results, be it because the problem is untractable 

or because there exist no "optimal" procedures, then asymptotic optimality theory may 

help. For instance, to compare two tests we might compare approximations to their power 

functions. To compare estimators, we might compare asymptotic variances rather than 

exact variances. A major result in this area is that for smooth parametric models maximum 

likelihood estimators are asymptotically optimal. This roughly means the following. First, 

maximum likelihood estimators are asymptotically consistent: The sequence of estimators 

converges in probability to the true value of the parameter. Second, the rate at which 

maximum likelihood estimators converge to the true value is the fastest possible, typically 

1/ ..;n. Third, their asymptotic variance, the variance of the limit distribution of ..;n (On - 0), 

is minimal; in fact, maximum likelihood estimators "asymptotically attain" the Cramer-Rao 

bound. Thus asymptotics justify the use of the maximum likelihood method in certain 

situations. It is of interest here that, even though the method of maximum likelihood often 

leads to reasonable estimators and has great intuitive appeal, in general it does not lead 

to best estimators for finite samples. Thus the use of an asymptotic criterion simplifies 

optimality theory considerably. 

By taking limits we can gain much insight in the structure of statistical experiments. It 

turns out that not only estimators and test statistics are asymptotically normally distributed, 

but often also the whole sequence of statistical models converges to a model with a nor-

mal observation. Our good understanding of the latter "canonical experiment" translates 

directly into understanding other experiments asymptotically. The mathematical beauty of 

this theory is an added benefit of asymptotic statistics. Though we shall be mostly concerned 

with normal limiting theory, this theory applies equally well to other situations. 

1.3 Limitations 

Although asymptotics is both practically useful and of theoretical importance, it should not 

be taken for more than what it is: approximations. Clearly, a theorem that can be interpreted 

as saying that a statistical procedure works fine for n -+- 00 is of no use if the number of 

available observations is n = 5. 

In fact, strictly speaking, most asymptotic results that are currently available are logically 

useless. This is because most asymptotic results are limit results, rather than approximations 

consisting of an approximating formula plus an accurate error bound. For instance, to 

estimate a value a, we consider it to be the 25th element a = a25 in a sequence at, a2, ... , 

and next take limn .... oo an as an approximation. The accuracy of this procedure depends 

crucially on the choice of the sequence in which a25 is embedded, and it seems impossible 

to defend the procedure from a logical point of view. This is why there is good asymptotics 

and bad asymptotics and why two types of asymptotics sometimes lead to conflicting 

claims. 

Fortunately, many limit results of statistics do give reasonable answers. Because it may 

be theoretically very hard to ascertain that approximation errors are small, one often takes 

recourse to simulation studies to judge the accuracy of a certain approximation. 
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Just as care is needed if using asymptotic results for approximations, results on asymptotic 

optimality must be judged in the right manner. One pitfall is that even though a certain 

procedure, such as maximum likelihood, is asymptotically optimal, there may be many 

other procedures that are asymptotically optimal as well. For finite samples these may 

behave differently and possibly better. Then so-called higher-order asymptotics, which 

yield better approximations, may be fruitful. See e.g., [7], [52] and [114]. Although we 

occasionally touch on this subject, we shall mostly be concerned with what is known as 

"first-order asymptotics." 

1.4 The Index n 

In all of the following n is an index that tends to infinity, and asymptotics means taking 

limits as n -+ 00. In most situations n is the number of observations, so that usually 

asymptotics is equivalent to "large-sample theory." However, certain abstract results are 

pure limit theorems that have nothing to do with individual observations. In that case n just 

plays the role of the index that goes to infinity. 

1.5 Notation 

A symbol index is given on page xv. 

For brevity we often use operator notation for evaluation of expectations and have special 

symbols for the empirical measure and process. 

For P a measure on a measurable space (X, B) and I : X IRk a measurable function, 

PI denotes the integral J I dP; equivalently, the expectation Epl(XI ) for Xl a random 

variable distributed according to P. When applied to the empirical measure 1P n of a sample 

Xl, ... , Xn , the discrete uniform measure on the sample values, this yields 

This formula can also be viewed as simply an abbreviation for the average on the right. The 

empirical process Gnl is the centered and scaled version of the empirical measure, defined 

by 

This is studied in detail in Chapter 19, but is used as an abbreviation throughout the book. 
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Stochastic Convergence 

This chapter provides a review of basic modes of convergence of sequences 

of stochastic vectors, in particular convergence in distribution and in 

probability. 

2.1 Basic Theory 

A random vector in :IRk is a vector X = (XI, ... , Xk) of real random variables. t The dis-

tributionfunction of X is the map x t-+ P(X x). 

A sequence of random vectors Xn is said to converge in distribution to a random vector 

X if 

P(Xn x) -+ P(X x), 

for every x at which the limit distribution function x t-+ P(X x) is continuous. Alterna-

tive names are weak convergence and convergence in law. As the last name suggests, the 

convergence only depends on the induced laws of the vectors and not on the probability 

spaces on which they are defined. Weak convergence is denoted by Xn -v-+ X; if X has dis-

tribution L, or a distribution with a standard code, such as N(O, 1), then also by Xn -v-+ L or 

Xn -v-+ N(O, 1). 

Let d (x, y) be a distance function on IRk that generates the usual topology. For instance, 

the Euclidean distance 

( 
k ) 1/2 

d(x, y) = IIx - yll = 8(Xi - Yi)2 

A sequence of random variables Xn is said to converge in probability to X if for all e > 0 

P(d(Xn , X) > e) -+ O. 

This is denoted by Xn X. In this notation convergence in probability is the same as 
p 

d(Xn, X) -+ o. 

t More fonnally it is a Borel measurable map from some probability space in ]Rk. Throughout it is implic-

itly understood that variables X. g(X), and so forth of which we compute expectations or probabilities are 

measurable maps on some probability space. 

5 
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6 Stochastic Convergence 

As we shall see, convergence in probability is stronger than convergence in distribution. 

An even stronger mode of convergence is almost-sure convergence. The sequence Xn is 

said to converge almost surely to X if d(Xn, X) 0 with probability one: 

P(limd(Xn' X) = 0) = 1. 

This is denoted by Xn X. Note that convergence in probability and convergence almost 

surely only make sense if each of Xn and X are defined on the same probability space. For 

convergence in distribution this is not necessary. 

2.1 Example (Classical limit theorems). Let Y n be the average of the first n of a sequence 

of independent, identically distributed random vectors Yt, Y2, .... If Ell Ytll < 00, then 

fn EYt by the strong law of large numbers. UnderthestrongerassumptionthatEIIYtlI2 < 

00, the central limit theorem asserts that ,In(fn - EYt) -v-+ N(O, Cov Yt). The central limit 

theorem plays an important role in this manuscript. It is proved later in this chapter, first 

for the case of real variables, and next it is extended to random vectors. The strong law 

of large numbers appears to be of less interest in statistics. Usually the weak law of large 

numbers, according to which Yn EYt. suffices. This is proved later in this chapter. 0 

The portmanteau lemma gives a number of equivalent descriptions of weak convergence. 

Most of the characterizations are only useful in proofs. The last one also has intuitive value. 

2.2 Lemma (Portmanteau). For any random vectors Xn and X thefollowing statements 

are equivalent. 

(i) P(Xn :::: x) P(X :::: x) for all continuity points ofx P(X :::: x); 

(ii) Ef(Xn) Ef(X) for all bounded, continuous functions f; 

(iii) Ef(Xn) Ef(X) for all bounded, Lipschitzt functions f; 

(iv) liminfEf(Xn) Ef(X) for all nonnegative, continuous functions f; 

(v) liminfP(Xn E G) P(X E G) for every open set G; 

(vi) lim sup P(Xn E F) :::: P(X E F) for every closed set F; 

(vii) P(Xn E B) P(X E B) for all Borel sets B with P(X EBB) = 0, where 

B B = Ii - iJ is the boundary of B. 

Proof. (i) =} (ii). Assume first that the distribution function of X is continuous. Then 

condition (i) implies that P(Xn E I) P(X E l) for every rectangle I. Choose a 

sufficiently large, compact rectangle I with P(X ¢ l) < 8. A continuous function f is 

uniformly continuous on the compact set I. Thus there exists a partition I = UjIj into 

finitely many rectangles Ij such that f varies at most 8 on every Ij • Take a point x j from 

each Ij and define fe = Lj f(xj)l/r Then If - fel < 8 on I, whence if f takes its values 

in [-1,1], 

IEf(Xn) - Efe(Xn)I :::: 8 + P(Xn ¢ I), 

IEf(X) - Efe(X) I :::: 8 + P(X ¢ l) < 28. 

t A function is called Lipschitz if there exists a number L such that I f (x) - f (y) I Ld (x. y), for every x and 

y. The least such number L is denoted IIflllip' 
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For sufficiently large n, the right side of the first equation is smaller than 2ε as well. We

combine this with

∣

∣E fε
(

Xn

)

− E fε(X)
∣

∣ ≤
∑

j

∣

∣P
(

Xn ∈ I j

)

− P
(

X ∈ I j

)∣

∣

∣

∣ f
(

x j

)∣

∣ → 0.

Together with the triangle inequality the three displays show that
∣

∣E f (Xn) − E f (X)
∣

∣ is

bounded by 5ε eventually. This being true for every ε > 0 implies (ii).

Call a set B a continuity set if its boundary δB satisfies P(X ∈ δB) = 0. The preceding

argument is valid for a general X provided all rectangles I are chosen equal to continuity

sets. This is possible, because the collection of discontinuity sets is sparse. Given any

collection of pairwise disjoint measurable sets, at most countably many sets can have

positive probability. Otherwise the probability of their union would be infinite. Therefore,

given any collection of sets {Bα : α ∈ A} with pairwise disjoint boundaries, all except at

most countably many sets are continuity sets. In particular, for each j at most countably

many sets of the form {x : x j ≤ α} are not continuity sets. Conclude that there exist dense

subsets Q1, . . . , Qk of R such that each rectangle with corners in the set Q1 × · · · × Qk is

a continuity set. We can choose all rectangles I inside this set.

(iii) ⇒ (v). For every open set G there exists a sequence of Lipschitz functions with

0 ≤ fm ↑ 1G . For instance fm(x) = (md(x, Gc)) ∧ 1. For every fixed m,

lim inf
n→∞

P(Xn ∈ G) ≥ lim inf
n→∞

E fm(Xn) = E fm(X).

As m → ∞ the right side increases to P(X ∈ G) by the monotone convergence theorem.

(v) ⇔ (vi). Because a set is open if and only if its complement is closed, this follows by

taking complements.

(v) + (vi) ⇒ (vii). Let
◦

B and B denote the interior and the closure of a set, respectively.

By (v)

P(X ∈
◦

B) ≤ lim inf P(Xn ∈
◦

B) ≤ lim sup P
(

Xn ∈ B̄
)

≤ P(X ∈ B̄),

by (vi). If P(X ∈ δB) = 0, then left and right side are equal, whence all inequalities

are equalities. The probability P(X ∈ B) and the limit lim P(Xn ∈ B) are between the

expressions on left and right and hence equal to the common value.

(vii) ⇒ (i). Every cell (−∞, x] such that x is a continuity point of x �→ P(X ≤ x) is a

continuity set.

The equivalence (ii) ⇔ (iv) is left as an exercise. �

The continuous-mapping theorem is a simple result, but it is extremely useful. If the

sequence of random vectors Xn converges to X and g is continuous, then g(Xn) converges

to g(X). This is true for each of the three modes of stochastic convergence.

2.3 Theorem (Continuous mapping). Let g : R
k �→ R

m be continuous at every point of

a set C such that P(X ∈ C) = 1.

(i) If Xn � X, then g(Xn) � g(X);

(ii) If Xn
P

→ X, then g(Xn)
P

→ g(X);

(iii) If Xn
as
→ X, then g(Xn)

as
→ g(X).
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8 Stochastic Convergence 

Proof. (i). The event {g(Xn) E F} is identical to the event {Xn E g-l(F)}. For every 

closed set F, 

To see the second inclusion, take x in the closure of g-l (F). Thus, there exists a sequence 

Xm with Xm -+ x and g(xm) E F for every F. If x E C, then g(xm ) -+ g(x), which is in F 

because F is closed; otherwise x E CC. By the portmanteau lemma, 

limsupP(g(Xn) E F) :::; limsupP(Xn E g-l(F)) :::; p(X E g-1(F)). 

Because P(X E CC) = 0, the probability on the right is P(X E g-l(F)) = p(g(X) E 

F). Apply the portmanteau lemma again, in the opposite direction, to conclude that 

g(Xn) -v-+ g(X). 

(ii). Fix arbitrary e > O. For each 8 > 0 let B8 be the set of x for which there exists 

y with d(x, y) < 8, but d(g(x), g(y)) > e. If X rt B8 and d(g(Xn), g(X)) > e, then 

d(Xn, X) ::: 8. Consequently, 

The second term on the right converges to zero as n -+ 00 for every fixed 8 > O. Because 

B8 n C ..(, 0 by continuity of g, the first term converges to zero as 8 ..(, O. 

Assertion (iii) is trivial. • 

Any random vector X is tight: For every e > 0 there exists a constant M such that 

p( II X II > M) < e. A set of random vectors {Xa : a E A} is called uniformly tight if M can 

be chosen the same for every Xa: For every e > 0 there exists a constant M such that 

sup p(IIXa II > M) < e. 
a 

Thus, there exists a compact set to which all Xa give probability "almost" one. Another 

name for uniformly tight is bounded in probability. It is not hard to see that every weakly 

converging sequence Xn is uniformly tight. More surprisingly, the converse of this statement 

is almost true: According to Prohorov's theorem, every uniformly tight sequence contains a 

weakly converging subsequence. Prohorov's theorem generalizes the Heine-Borel theorem 

from deterministic sequences Xn to random vectors. 

2.4 Theorem (Prohorov's theorem). Let Xn be random vectors in IRk. 

(i) If Xn -v-+ X for some X, then {Xn : n E N} is uniformly tight; 

(ii) If Xn is uniformly tight, then there exists a subsequence with Xnj -v-+ X as j -+ 00, 

for some X. 

Proof. (i). Fix a number M such that p(IIXII ::: M) < e. By the portmanteau lemma 

P(IIXnll ::: M) exceeds p(IIXIl ::: M) arbitrarily little for sufficiently large n. Thus there 

exists N such that p( II Xn II ::: M) < 2e, for all n ::: N. Because each of the finitely many 

variables Xn with n < N is tight, the value of M can be increased, if necessary, to ensure 

that p(IIXn II ::: M) < 2e for every n. 

www.cambridge.org/9780521784504
www.cambridge.org


Cambridge University Press
978-0-521-78450-4 — Asymptotic Statistics
A. W. van der Vaart 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

2.1 Basic Theory 9 

(ii). By Helly's lemma (described subsequently), there exists a subsequence Fnj of 

the sequence of cumulative distribution functions Fn(x) = P(Xn :s x) that converges 

weakly to a possibly "defective" distribution function F. It suffices to show that F is a 

proper distribution function: F(x) 0,1 if Xi -00 for some i, or x 00. By the 

uniform tightness, there exists M such that Fn (M) > 1- e for all n. By making M larger, if 

necessary, it can be ensured thatM is a continuity point of F. Then F(M) = lim Fnj(M) 

1 - e. Conclude that F(x) 1 as x 00. That the limits at -00 are zero can be seen in 

a similar manner. • 

The crux of the proof of Prohorov's theorem is Helly's lemma. This asserts that any 

given sequence of distribution functions contains a subsequence that converges weakly to 

a possibly defective distribution function. A defective distribution function is a function 

that has all the properties of a cumulative distribution function with the exception that it has 

limits less than 1 at 00 and/or greater than 0 at -00. 

2.5 Lemma (Helly's lemma). Each given sequence Fn of cumulative distributionfunc-

tions on IRk possesses a subsequence Fn j with the property that Fn j (x) F (x) at each 

continuity point x of a possibly defective distribution function F. 

Proof. Let Qk = {q I , q2, ... } be the vectors with rational coordinates, ordered in an 

arbitrary manner. Because the sequence Fn(qd is contained in the interval [0, 1], it has 

a converging subsequence. Call the indexing subsequence and the limit G(ql). 

Next, extract a further subsequence {n}} c {n}} along which Fn (q2) converges to a 

limit G(q2), a further subsequence {nJ} C {n}} along which Fn(q3) converges to a limit 

G(q3), ... , and so forth. The "tail" of the diagonal sequence n j := belongs to every 

sequence Hence Fn/qi) G(qi) for every i = 1,2, .... Because each Fn is nonde-

creasing, G(q) :s G(q') if q :s q'. Define 

F(x) = inf G(q). 
q>x 

Then F is nondecreasing. It is also right-continuous at every point x, because for every 

e > Othereexistsq > x with G(q) - F(x) < e, which implies F(y) - F(x) < eforevery 

x :s y :s q. Continuity of F at x implies, for every e > 0, the existence of q < x < q' 

such that G(q') - G(q) < e. By monotonicity, we have G(q) :s F(x) :s G(q'), and 

Conclude that lliminf Fnj(x) - F(x)1 < e. Because this is true for every e > 0 and 

the same result can be obtained for the lim sup, it follows that Fn/x) F(x) at every 

continuity point of F. 

In the higher-dimensional case, it must still be shown that the expressions defining masses 

of cells are nonnegative. For instance, for k = 2, F is a (defective) distribution function 

only if F(b) + F(a) - F(al, b2) - F(a2, bl) 0 for every a :s b. In the case that the four 

comers a, b, (ai, b2), and (a2, bl) of the cell are continuity points; this is immediate from 

the convergence of Fnj to F and the fact that each Fn is a distribution function. Next, for 

general cells the property follows by right continuity. • 
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10 Stochastic Convergence 

2.6 Example (Markov's inequality). A sequence Xn of random variables with EI Xn IP = 
0(1) for some p > 0 is uniformly tight. This follows because by Markov's inequality 

The right side can be made arbitrarily small, uniformly in n, by choosing sufficiently 

largeM. 

Because EX; = var Xn + (EXn)2, an alternative sufficient condition for uniform tight-

ness is EXn = 0 (1) and var Xn = 0 (1). This cannot be reversed. 0 

Consider some of the relationships among the three modes of convergence. Convergence 

in distribution is weaker than convergence in probability, which is in tum weaker than 

almost-sure convergence, except if the limit is constant. 

2.7 Theorem. Let Xn, X and Yn be random vectors. Then 

(i) Xn X implies Xn X; 

(ii) Xn X implies Xn -v-+ X; 

(iii) Xn c for a constant c if and only if Xn -v-+ c; 

(iv) if Xn -v-+ X and d(Xn, Yn) 0, then Yn -v-+ X; 

(v) if Xn -v-+ X and Yn cfor a constant c, then (Xn, Yn) -v-+ (X, c); 

(vi) if Xn X and Yn Y, then (Xn, Yn) (X, Y). 

Proof. (i). The sequence of sets An = X) > e} is decreasing for every 

e > 0 and decreases to the empty set if Xn(w) X(w) for every w. If Xn X, then 

P(d(Xn' X) > e) =:: P(An) O. 

(iv). For every f with range [0, 1] and Lipschitz norm at most 1 and every e > 0, 

The second term on the right converges to zero as n 00. The first term can be made 

arbitrarily small by choice of e. Conclude that the sequences Ef(Xn) and Ef(Yn) have the 

same limit. The result follows from the portmanteau lemma. 

(ii). Because d(Xn, X) 0 and trivially X -v-+ X, it follows that Xn -v-+ X by (iv). 

(iii). The "only if' part is a special case of (ii). For the converse let ball(c, e) be the open 

ball of radius e around c. Then P(d(Xn, c) ::: e) = p(Xn E ball(c, e)c). If Xn -v-+C, then 

the lim sup of the last probability is bounded by p(c E ball(c, eY) = 0, by the portmanteau 

lemma. 

(v). First note that d( (Xn, Yn), (Xn, c») = d(Yn, c) O. Thus, according to (iv), it 

suffices to show that (Xn , c) -v-+ (X, c). For every continuous, bounded function (x, y) 

f(x, y), the function x f(x, c) is continuous and bounded. Thus Ef(Xn, c) Ef(X, c) 

if Xn -v-+ X. 

(vi). This follows fromd(x\, y\), (X2, Y2») =:: d(x\, X2) + d(y\, Y2). • 

According to the last assertion of the lemma, convergence in probability of a sequence of 

vectors Xn = (Xn,\, ... , Xn,k) is equivalent to convergence of every one of the sequences 

of components Xn,i separately. The analogous statement for convergence in distribution 
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