

> Wetland Ecology Principles and Conservation

Wetlands are among the most productive and biologically diverse ecosystems on Earth. Their very diversity has confounded ecologists and produced a fragmented area of study where each wetland type has tended to be considered in isolation. The discipline has been further compartmentalized by narrow focus on specific organisms and geographic regions. This book, in contrast, provides a synthesis of the existing field of wetland ecology, using a few central themes. These themes include basic characteristics of wetlands, key environmental factors that produce wetland community types and some unifying problems such as assembly rules, restoration and conservation. The volume draws upon a complete range of wetland habitats and geographic regions, including examples from Africa, Asia, Europe, Australia and New Zealand, as well as from North and South America. No other book provides up-to-date ecological syntheses over the entire geographical and habitat range of wetlands. As such, Wetland Ecology is essential reading for anyone planning research or management in wetland habitats.

PAUL KEDDY is the Edward G. Schlieder Professor for Environmental Studies at Southeastern Louisiana University. He is author of *Competition* (1989) which won both the Lawson Medal and the Gleason Prize, and co-editor of *Assembly Rules: Perspectives, Advances, Retreats* (1999).

CAMBRIDGE STUDIES IN ECOLOGY

Editors

H. J. B. Birks Botanical Institute, University of Bergen, Norway, and Environmental Change Research Centre, University College London
J. A. Wiens Colorado State University, USA

Advisory Editorial Board

P. Adam University of New South Wales, Australia R. T. Paine University of Washington, Seattle, USA R. B. Root Cornell University, USA

F. I. Woodward University of Sheffield, Sheffield, UK

This series presents balanced, comprehensive, up-to-date, and critical reviews of selected topics within ecology, both botanical and zoological. The Series is aimed at advanced final-year undergraduates, graduate students, researchers, and university teachers, as well as ecologists in industry and government research.

It encompasses a wide range of approaches and spatial, temporal, and taxonomic scales in ecology, experimental, behavioural and evolutionary studies. The emphasis throughout is on ecology related to the real world of plants and animals in the field rather than on purely theoretical abstractions and mathematical models. Some books in the Series attempt to challenge existing ecological paradigms and present new concepts, empirical or theoretical models, and testable hypotheses. Others attempt to explore new approaches and present syntheses on topics of considerable importance ecologically which cut across the conventional but artificial boundaries within the science of ecology.

Wetland Ecology Principles and Conservation

PAUL A. KEDDY

Southeastern Louisiana University

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS
The Edinburgh Building, Cambridge CB2 2RU, UK
40 West 20th Street, New York, NY 10011-4211, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
Ruiz de Alarcón 13, 28014 Madrid, Spain
Dock House, The Waterfront, Cape Town 8001, South Africa
http://www.cambridge.org

© Cambridge University Press 2000

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2000 Reprinted 2002 Reprinted with corrections 2002

Printed in the United Kingdom at the University Press, Cambridge

Typeface Monotype Bembo 11/13pt. System QuarkXPressTM [SE]

A catalogue record for this book is available from the British Library

Library of Congress Cataloguing in Publication data

Keddy, Paul A., 1953-

Wetland ecology principles and conservation / Paul Keddy.
p. cm. – (Cambridge studies in ecology)
ISBN 0 521 78001 2 (hb) – ISBN 0 521 78367 4 (pb)
1. Wetland ecology. 2. Wetland conservation. I. Title. II. Series.
QH541.5.M3 K44 2000
577.68–dc21 99-045443

ISBN 0 521 78001 2 hardback ISBN 0 521 78367 4 paperback

Contents

Preface Acknowledgements		page ix xiii
1	Wetlands: an overview	3
	Definitions and distributions	3
	Causal factors in wetland ecology	10
	Wetland classification	17
	Plants, stress and wetland types	33
	Wetland functions	55
	The Pantanal	77
2	Zonation and succession: shorelines as a prism	81
	Shorelines as a model system for the study of wetlands	82
	Mechanisms of zonation	87
	Some relevant theory: ecological and physiological	
	response curves	102
	Empirical studies of zonation	107
	On the nature and existence of communities	114
	General lessons from analysis of zonation	121
	Conclusions	123
3	Diversity	124
	Dominance and diversity	125
	Factors controlling the number of species in wetlands	126
	Biomass and diversity: a general model for herbaceous	
	plant communities	149
	Species pools and biodiversity	163
	Conservation of biological diversity	171
	Conclusions	172

vi · Contents

PART II. FACTORS CONTROLLING PROPERTIES OF WETLANDS

4	Hydrology	177
	Gilgamesh	177
	Some biological consequences of changing water levels The general relationship between wetlands and water level	184
	fluctuations	189
	The ubiquity of water level fluctuations	194
	Reservoirs, dams and floodplains: the consequences of	171
	altered hydrology	221
	A predictive model: changes in shoreline wetlands	233
	A summary model: frequency and intensity of flooding	236
	Back to reality: the Amazon river basin	238
5	Fertility	240
	Fertility and primary production	241
	Fertility gradients	247
	Evolution along fertility gradients	256
	Mycorrhizae	259
	Animals and fertility	262
	Eutrophication: too much of a good thing	265
	Effects of eutrophication	271
	Hydrology, fertility and wetlands	278
6	Disturbance	281
	Introduction	281
	Four properties of disturbance	282
	Regeneration from buried seeds after disturbance	284
	Examples of disturbance	286
	Disturbance and gap dynamics in wetlands	308
	Measuring the effects of disturbance	316
	Comparing disturbances	317
7	Competition	319
	Introduction	319
	Testing for competition	320
	Competition and field distributions	328
	Mechanisms of competition: exploitation vs. interference	334
	Constraints upon competition: three relevant models	337
	Competition and co-operation	351
	Conclusions	353

	Contents	· vii
8	Herbivory Introduction	355 355
	Field observations on wildlife diets	356
	Comparative studies	365
	Empirical relationships	370
	Field experiments	374
	Some relevant theory	384
	Conclusions	388
9	Burial	390
	Introduction	390
	Rates of sedimentation	395
	Effects of burial	402
	Sedimentation and hydrosere succession	410
	A simulation model for sediment production	412
	Importance of time scale: sedimentation, emergence and	
	marsh dynamics	414
	Conclusions	418
PΑ	RT III. THE PATH FORWARD	
10	Wetland restoration: assembly rules in the service	
	of conservation	421
	Introduction	421
	Some background to restoration	423
	Assembly rules as a foundation for restoration	427
	The experimental assembly of wetlands	436
	Response rules	440
	Some methodological considerations	440
	Problems and prospects for restoration	445
11	A functional approach	447
	Introduction	447
	The strategy of simplification	448
	Functional classification of wetland plants	458
	A general procedure for constructing functional groups	463
	Functional groups in marsh plants	469
	Functional types of wetlands	474
	Conclusions	478
12	Wetland conservation, management and research	479
	Change in wetlands	479

viii · Contents	
Two perspectives on conservation	484
Priorities for action	495
Indicators: setting goals and measuring performance	ce 525
Another perspective on ecosystem management	531
Goals, tactics and strategies for wetland scientists: a personal perspective	532
Summary	540
References	
Index	594

Preface

According to Bernard Shaw, writer of many a lengthy preface, the lesson intended by an author is hardly ever the lesson the world chooses to learn from his book. If Shaw is right (and who would risk disagreeing with him), why would anyone trouble to write a book? And why a book on wetlands?

In answer to the first question, the motivation of all writers includes a healthy dose of inspiration, frustration, and ego gratification. Events can conspire to feed these forces, with unfortunate consequences for both writers and the public. When Dr Birks first asked me to write this book, I therefore declined. In part, I was not convinced that a need existed. Bringing a new book into the world requires the shouldering of parental obligations. (While one can keep one's rowdy children at home, a book is always on public display.) The world certainly has too many children, and only the most devoted reader, deep-pocketed publisher, or hardened bibliophile could believe that every author who is inclined towards writing should do so. The self-restraint that is a virtue in biological procreation, may be equally so for aspiring authors.

Events can, however, over-ride caution. Illness, like the threat of a hanging, tends to concentrate and clarify one's mind. Moreover, during the days chained to the wall before the hanging, one is inclined to dwell on shortcomings, particularly those of one's associates. But I digress. This is, after all, a preface to a book on wetlands.

The principal objective of this book is to try to provide some unity and coherence in the study of wetland ecology. To do so, I have organized this book into three sections. The first section (Chapters 1–3) emphasizes the properties of wetlands, or, in statistical terms, the dependent variables in our inquiry. The next section (Chapters 4–9) addresses the environmental factors that control these properties: in statistical terms, the independent variables. In these chapters, I freely range across wetland types

x · Preface

and geographic regions. My self-assigned task is to illustrate the relationships among properties and environmental factors, whether they occur in an Amazonian floodplain, prairie pothole, boreal peatland or tidal marsh. The book may still tend to emphasize the types of wetlands with which I am most familiar, but this should not distract a reader from principles and scientific generalities. The final section (Chapters 10–12) illustrates some larger frameworks for studying the relationships between ecological properties and conservation biology. Assembly rules, functional groups, and restoration ecology receive particular attention.

The book has been prepared with several audiences in mind. It is intended as a text book for senior undergraduates, an introduction to key factors controlling wetlands for busy managers, and as general reading for any scientist intending to work in wet habitats. Further, the first chapter, will I hope, introduce the essential features of wetlands to a general reader; while superficial in places, it is less so than many popular treatises, and it will simultaneously remind more experienced readers about the salient features that make wetlands of particular interest to humanity. The main body of the book presents a general framework for the study of wetland communities. For practising wetland scientists I had an expanded purpose. The discipline of wetland ecology is currently Balkanized by habitat types, geographic regions, and study organisms. Many of the studies of particular wet habitats that I have read over the past decade have seemed blissfully unaware of nearly identical work in other habitats, wet or dry. By combining all wetland types within one book, I have tried to restore some conceptual unity to the discipline by emphasizing the essential processes that all wetlands share, and then by illustrating the ways in which some of them differ. Hence the part of the title referring to principles. I hope that specialists will be stimulated by seeing the parallel advances in habitat types and geographic regions other than their own, and that this enriched context will assist them with further progress within their own areas of specialization. In exchange, I trust they will forgive the inevitable oversights that annoy a specialist.

The final part of the title mentions conservation. Sound science is the essential foundation of good ecosystem management. Ecosystem management emphasizes ecological processes and their interconnections. This book takes exactly such a perspective: it begins with patterns present in wetlands, and then proceeds to the processes and interconnections that produce the patterns. The focus is upon communities and ecosystems themselves; implications for global biogeochemical cycles are mentioned from time to time, but they are not a primary focus. Rather, it is assumed

Preface · xi

that, in most cases, maintaining the normal processes within wetlands will ensure that their valued functions continue to occur. When, and if, it is necessary to manipulate wetlands in order to change some aspect of their global function, say, to increase wildlife production or to decrease methane production, this will always require knowledge of processes at the local community scale.

I first thought that such a book might be too personal a perspective on wetlands. Fields of enquiry are now so large that perhaps only multi-authored works are appropriate. However, my editor and advisor, Alan Crowden, has convinced me that many readers actually prefer a systematic and personal account of a field to a series of edited papers. Moreover, I have slowly convinced myself, too, that the existing literature is far too fragmented and diffuse and therefore confused. I have already written bluntly, perhaps too much so, of my views on symposium reports and festschrifts (Keddy 1991a, b, c). A number of recent symposium volumes on wetlands appear to be little more than expensive books with a haphazard collection of people giving a haphazard collection of papers with no unifying theme whatsoever except for the fact that all work in wet areas. Surely we can aspire to do better than this. While my own community-oriented perspective undoubtedly has its limitations, it at least compensates with continuity and consistency.

I have tried to emphasize several research strategies. These include (i) greater emphasis upon measurable properties of ecosystems and (ii) the relative importance of different environmental factors that produce pattern. Far too many studies in wetlands consist, it seems, of little more than drawings of transects through wetlands or autecological studies of small groups of species living in wet places. Neither of these latter styles will inspire bright young scientists to enter the field. In fact, wetland community ecology is exciting, challenging, socially significant, and worthy of our best minds.

At first I was going to include a chapter on applications. But then my continued resistance to the forced distinction between theoretical and applied ecology intervened. Throughout this book there is an interplay between theory and application. In combining them we can achieve maximum impact upon knowledge with a minimal expenditure of effort. An appeal to efficiency itself ought to be sufficient, but we are now faced, in addition, with the rapid loss of the very ecosystems we study. We must hasten if we are to solve some of the growing problems with management of wetlands. Throughout the book there are practical examples that show that wetland ecologists have a great many useful things to say

xii · Preface

to environmental managers. Altered hydrology, eutrophication, loss of species – these are fundamental environmental issues and conceptual axes in the study of wetlands. There is therefore no single chapter on conservation alone because the entire book is about conservation.

Were it not for the inseparability of theory and application, this book might be considered schizophrenic. It is written with both the basic researcher and the resource manager in mind. I hope that both bright, young graduate students and cynical, overworked managers can benefit from consulting it. I have made abundant use of subheadings and figures so that parts that, at least on first reading, appear of secondary importance can easily be skipped. Each chapter will, I hope, be able to stand alone. Those needing an immediate short course, or feeling too harried to deal with an entire book, can obtain an overview of essentials with Chapters 1, 4, 5, and 12. Chapters 10 and 11 are the most speculative, and can be safely omitted from a first reading since they deal more with future possibilities than established phenomena.

Some of the limitations of the book are deliberate. I have placed an emphasis upon communities and on the factors than influence them. Although nutrient cycling is an important topic, I have not dealt with it extensively except under the heading of eutrophication. Similarly, systems models are already well covered in works such as Good *et al.* (1978), Mitsch and Gosselink (1986), and Patten (1990). Apart from eutrophication, I have left the topic of toxic contaminants to other better-qualified authors. There are also two fine compendia which already describe wetland types by region (Gore 1983; Whigham *et al.* 1992). I have not tried to duplicate their efforts. The logical structure of this book is built upon similarities in process rather than geography.

Finally (restrictions on travel are inclined to make one long-winded) this is not *just* a book on wetlands. I have tried to present not only an overview of wetland ecology, but to illustrate the general procedures with which one can dissect an ecological community to search for patterns and the mechanisms that may cause them. In this way, I hope to not only contribute to our understanding of wetlands, but to illustrate practices that will be of use in other vegetation types and ecological communities.

Since we began with Shaw, let us also close with him too. A successful book, according to Shaw, will impress the strong, intimidate the weak and tickle the connoisseur.

Paul Keddy

Acknowledgements

I thank colleagues including Mark Bertness, Dan Brunton, Duncan Cameron, Paul Catling, Alan Crowden, Ian Davidson, Jim Grace, Phil Grime, Laura Gough, Mary Kentula, Doug Larson, Jorge Meave, Steward Pickett, Richard Reader, Curtis Richardson, Clayton Rubec, Gary Shaffer, Dan Simberloff, Evan Weiher, and Doug Wilcox for their advice, encouragement, criticisms, assistance or input. Several anonymous but tactful reviewers commented at length on early drafts; I hope this version leads to the conclusion that their efforts were worthwhile. I also thank my former students and co-workers, Scott Wilson, Bill Shipley, Céline Boutin, Connie Gaudet, Dwayne Moore, Nick Hill, Irene Wisheu, Lisa Twolan-Strutt and Maureen Toner for examples I have drawn upon in this volume. Since a book of this length and breadth is certain to have errors and omissions, I trust readers will be forthright in drawing them to my attention. Special thanks must go to Irene Wisheu, Evan Weiher and Lauchlan Fraser who ran my laboratory in Ottawa during 8 long years of adversity. Without their loyalty, attention to detail and sheer hard work, far less would have been possible. Rochelle Lawson and Teri Keogh did the constant day-to-day work. While it is a cliché to say that this project could not have been done without them, in this case it is also literally true. Finally, much of the funding was provided by the Natural Sciences and Engineering Research Council of Canada; their generous support over many years is gratefully noted.

The final product is a team effort. The staff at Cambridge University Press, in particular, Mary Sanders, Maria Murphy and Sue Tuck, deserve special mention for their care and patience during production. The cover draws upon an original 1976 line drawing of a snapping turtle by Howard Coneybeare (courtesy of Friends of Algonquin Park) in a design by Chris McLeod. Other line drawings were prepared by Rochelle Lawson. Michaelyn Broussard helped track down the last errant figures, and Kim

xiv · Acknowledgements

Fisher contributed some new ones. Cathy Keddy was relentless at proofing. Copyediting and proofing were done amidst the cypress swamps and pine forests of south Louisiana. Special recognition must therefore be given to my hosts there, including Sally Clausen, Randy Moffett, John Miller, Nick Norton, Bill Font, Bob Hastings, Mark Hester and Gary Shaffer. All were willing to take a leap of faith and offer me the new professional home where this project came to fruition.