
1

Ordinary Differential Equations

1.1 Introduction

The formulation of many problems in physical and social sciences involves differential
equations that express the relationship among the derivatives of one or more unknown
functions with respect to the independent variables (Refs. [1–7]). In an ordinary differ-
ential equation (ODE), all derivatives are with respect to a single independent variable.
The order of a differential equation is the order of the highest derivative that appears
in the equation. For example, Newton’s law describing the angular position of an oscil-
lating pendulum consisting of a massless string of length � and a point mass m under
the influence of gravity (see Fig. 1.1) takes the form of a second-order differential
equation:

d2θ

dt2
+ g

�
sin θ = 0,

where θ = θ (t) and t denotes the time variable. Because of the term sin θ , the above is
a nonlinear differential equation whose solution has been extensively studied. Unfortu-
nately, to date, there is no comprehensive theory to solve general nonlinear differential
equations analytically. This stands in contrast to the well-developed theory of linear
differential equations. In the above example, if the angle of oscillation is small, then
sin θ ≈ θ , and the solution can be approximated from the following linear differential
equation:

d2θ

dt2
+ g

�
θ = 0.

In most cases, a linear differential equation can be obtained by linearization of a non-
linear one. We are fortunate that many physical systems can be adequately described
by linear differential equations.

Perhaps one of the most famous ODE is that of a linear spring–mass–damper system
(see Fig. 1.2) whose dynamics is governed by

m
d2w

dt2
+ ζ

dw

dt
+ kw = f,

where w denotes the position of the mass from its equilibrium position, f (t) is the
forcing function, and m, ζ , and k denote the mass, damping, and stiffness coefficients,
respectively. In practice, many vibration problems are treated as linear even if they
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2 Ordinary Differential Equations
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Figure 1.1. An oscillating pendulum.

involve a large number of degrees of freedom. This is because they typically deal
with small-amplitude motion about an equilibrium position. The control of such linear
systems can be handled conveniently by linear control, which represents a major portion
of control theory in general.

In this chapter, we will show how to solve homogeneous ODEs with constant coef-
ficients. The characteristic equation is derived and its solutions are discussed including
all possible cases such as distinct roots, repeated roots, etc. In the section of the non-
homogeneous ODEs with constant coefficients, the solution of the nonhomogeneous
equations and its properties are discussed. The last section briefly introduces coupled
differential equations and the definition of a matrix differential equation.

1.2 Homogeneous ODE with Constant Coefficients

An nth-order linear homogeneous ODE has the form

a0
dn y

dtn
+ a1

dn−1 y

dtn−1
+ · · · + an−1

dy

dt
+ an y = 0, (1.1)

where a0, a1, . . . , an are real constant coefficients. Note that the right-hand side is zero
in this case. In a physical system, a homogeneous ODE may correspond to the situation
in which the dynamic system does not have any input or force applied to it and its
response is due to some nonzero initial conditions.

EXAMPLE 1.1

The following equation is a homogeneous ODE:

d2 y

dt2
+ 3

dy

dt
+ 2y = 0.

This may represent a spring–mass–dashpot system with mass m = 1, damping
coefficient ζ = 3, and spring constant k = 2.

f(t)

k
w(t)

ζ

m

Figure 1.2. A spring–mass–damper system.
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1.2 Homogeneous ODE with Constant Coefficients 3

1.2.1 General Solution

Functions of y(t) that satisfy Eq. (1.1) are called the homogeneous solutions of the
ODE. It is anticipated that the solutions are of the form y = eγ t with appropriate values
of γ . To find these values, we substitute y = eγ t into the differential equations and
simplify the resultant expression to obtain

(a0γ
n + a1γ

n−1 + · · · + an−1γ + an)eγ t = 0. (1.2)

The equation

a0γ
n + a1γ

n−1 + · · · + an−1γ + an = 0. (1.3)

is called the characteristic equation of the ODE. A polynomial of degree n has n roots,
say, γ1, γ2, . . . , γn . Therefore, the characteristic equation can be written in the form

a0(γ − γ1)(γ − γ2) · · · (γ − γn) = 0. (1.4)

Solving the roots of characteristic equation (1.3) yields the values of γ1, γ2, . . . , γn .
Each value of γ represents one solution to the ODE. The general solution is a linear
combination of these solutions:

y = c1eγ1t + c2eγ2t + · · · + cneγ1n. (1.5)

The simplest situation is that in which all the characteristic roots γ1, γ2, . . . , γn are real
and distinct. Minor complexities will occur if there are some complex roots or repeated
roots. The following will summarize various possible cases.

CASE 1: REAL AND NONREPEATED ROOTS

If all the roots of characteristic equation (1.3) are distinct and real, the general solution
is

y = c1eγ1t + c2eγ2t + · · · + cneγ1n.

The coefficients c1, c2, . . . , cn are determined by initial conditions, which will be ad-
dressed later in this chapter.

EXAMPLE 1.2

The characteristic equation for the differential equation

d2 y

dt2
+ 3

dy

dt
+ 2y = 0

is

γ 2 + 3γ + 2 = 0,

which has two roots, γ1 = −1 and γ2 = −2. The general (homogeneous) solution
is

y = c1e−1t + c2e−2t .
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4 Ordinary Differential Equations

CASE 2: COMPLEX ROOTS

If the characteristic equation has complex roots, they must occur in complex-conjugate
pairs, σ ± iω, as the coefficients a0, a1, . . . , an are real numbers. Provided that the
roots are not repeated, the corresponding solutions that make up the general solution
will have the form e(σ+iω)t , e(σ−iω)t . We can carry the mathematics one step further by
considering the linear combination

Ae(σ+iω)t + Be(σ−iω)t = Aeσ t eiωt + Beσ t e−iωt

= Aeσ t (cos ωt + i sin ωt) + Beσ t (cos ωt − i sin ωt)
= (A + B)eσ t cos ωt + i(A − B)eσ t sin ωt
= c1eσ t cos ωt + c2eσ t sin ωt . (1.6)

The last equality is possible because of the expectation that the solution of a physical
system is real, so that A and B will be such that the combinations (A + B) and i(A − B)
are indeed real numbers. For convenience, (A + B) and i(A − B) are denoted by the
real coefficients c1 and c2, respectively. For this reason, we normally use the real-valued
solutions

eσ t cos ωt, eσ t sin ωt

as solutions that make up the general solution of the ODE.

EXAMPLE 1.3

Find the general solution of

d2 y

dt2
+ dy

dt
+ y = 0.

The characteristic equation is γ 2 + γ + 1 = 0, which has two roots:

γ1 = −1

2
+ i

√
3

2
, γ2 = −1

2
− i

√
3

2
.

The general solution is

y(t) = c1e− 1
2 t cos

√
3

2
t + c2e− 1

2 t sin

√
3

2
t .

CASE 3: REPEATED REAL ROOTS

If the roots of the characteristic equation are not distinct, i.e., some of the roots are
repeated, then some additional solutions to the ODE must be found to make up the
general solution. Fortunately, it can be shown that they have simple forms. If the real
root γ is repeated s times, then the corresponding solutions are not only

eγ t , (1.7)

as known before, but also

teγ t , t2eγ t , . . . , t s−1eγ t . (1.8)

It is easy to verify that the above solutions do indeed satisfy the homogeneous ODE.
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1.2 Homogeneous ODE with Constant Coefficients 5

EXAMPLE 1.4

Find the general solution of

d2 y

dt2
+ 2

dy

dt
+ y = 0.

The characteristic equation is γ 2 + 2γ + 1 = (γ + 1)2 = 0, which has two re-
peated roots, γ1 = −1 and γ2 = −1. The general solution is

y(t) = c1e−t + c2te−t .

CASE 4: REPEATED COMPLEX ROOTS

If the complex root σ + iω is repeated s times, then we have 2s solutions because the
complex roots always appear as conjugate pairs (for characteristic equations with real
coefficients). These roots can be shown to be

eσ t cos ωt, teσ t cos ωt, t2eσ t cos ωt, . . . , t s−1eσ t cos ωt,

eσ t sin ωt, teσ t sin ωt, t2eσ t sin ωt, . . . , t s−1eσ t sin ωt . (1.9)

Again, the above solutions can be easily shown to satisfy the homogeneous ODE.

EXAMPLE 1.5

Find the general solution of

d4 y

dt4
+ 2

d2 y

dt2
+ y = 0.

The characteristic equation is γ 4 + 2γ 2 + 1 = (γ + i)2(γ − i)2 = 0, which has
two repeated roots:

γ1 = i, γ2 = i, γ3 = −i, γ4 = −i.

The general solution is

y(t) = c1 cos t + c2t cos t + c3 sin t + c4t sin t.

1.2.2 Multiple Roots of γs − α= 0

In solving for the characteristic roots, it is sometimes necessary to solve for the multiple
roots of a number α, which can be real or complex. In general, α may be written
as

α = Reiθ , (1.10)

where R is the amplitude and θ is the phase angle. For a real number α, θ is zero or
integer multipliers of 2π . Therefore, we need to solve for the s roots of the equation

γ s = Reiθ . (1.11)
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6 Ordinary Differential Equations

One root is obviously,

γ1 = R1/seiθ/s . (1.12)

To find the remaining s − 1 roots, first realize that the angle of a complex number is
determined up to only a multiple of 2π . This means that the number α can be represented
by α = Rei(θ+2nπ ), where n can be zero or any positive or negative number. Thus, to
be more general, the equation to be solved becomes

γ s = Rei(θ+2nπ ), (1.13)

whose roots are

γ = R1/sei(θ+2nπ )/s . (1.14)

Setting n = 0 gives us the root γ1, as before. Setting n = 1, 2, . . . , s − 1 will produce
the remaining s − 1 roots for a total of s roots. It can easily be verified that setting
n equal to any other integer value, either positive or negative, will reproduce one of
these s roots.

EXAMPLE 1.6

Find the four roots of γ 4 + 1 = 0. Application of Eq. (1.13) yields

γ 4 = −1 = ei(π+2nπ ).

Hence,

γ = ei(π/4+nπ/2).

We obtain the four roots by setting n = 0, 1, 2, 3, which give (1 + i)/
√

2, (1 − i)/√
2, (−1 + i)/

√
2 and (−1 − i)/

√
2. The four roots are located on the complex

plane shown in Fig. 1.3.

Imag(γ)

Real(γ)

1

1

2
1 i+

2
1 i+−

2
1 i−−

2
1 i−

Figure 1.3. Four complex roots.
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1.2 Homogeneous ODE with Constant Coefficients 7

Imag(γ)

Real(γ)

1

1

-1

-1

Figure 1.4. Two real and two pure imaginary roots.

EXAMPLE 1.7

Find the four roots of γ 4 − 1 = 0. Since γ 4 = 1 = ei(2nπ ) we have

γ = ei(nπ/2).

Setting n = 0, 1, 2, 3, yields the four roots:

1, i, −1, −i.

The four roots are located on the complex plane shown in Fig. 1.4. Note that in
both Examples 1.6 and 1.7 the roots are equally spaced in the complex plane.
This is a general property of the complex roots of a number.

1.2.3 Determination of Coefficients

The general form of the solution to a homogeneous ODE is known from the roots of the
characteristic equation. However, the general solution contains the unknown coefficients
c1, c2, . . . , cn , which need to be determined. To be able to solve for the unknown
coefficients, new information is needed. The new information comes in the form of
the initial conditions that must be specified. The initial conditions are the specified
values of

y(0),
dy

dt

∣∣∣∣
t=0

,
d2 y

dt2

∣∣∣∣
t=0

, . . . ,
dn−1 y

dtn−1

∣∣∣∣
t=0

. (1.15)

Satisfying n initial conditions gives us n linear algebraic equations with n unknowns
c1, c2, . . . , cn . Solving this set of algebraic equations will give us the values of
c1, c2, . . . , cn . In a physical system, the initial conditions can be the values of its initial
position and initial velocity. It is clear that the response of a system can be uniquely
determined only after its initial conditions are specified.

EXAMPLE 1.8

Find the solution of the following ODE:

d2 y

dt2
+ 5

dy

dt
+ 6y = 0
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8 Ordinary Differential Equations

subject to the initial conditions y(0) = 0 and y′(0) = 1, where y′(0) = dy
dt |t = 0 = 1.

The general solution is

y(t) = c1e−2t + c2e−3t .

To satisfy the initial conditions, the coefficients must satisfy

c1 + c2 = 0,

2c1 + 3c2 = −1.

Solving these equations gives c1 = 1 and c2 = −1. Thus, the solution that satisfies
the initial conditions is

y(t) = e−2t − e−3t .

1.3 Nonhomogeneous ODE with Constant Coefficients

When the right-hand-side term is not zero, the ODE is said to be nonhomogeneous.
Thus, a general nonhomogeneous ODE with constant coefficients has the form

a0
dn y

dtn
+ a1

dn−1 y

dtn−1
+ · · · + an−1

dy

dt
+ an y = f (t). (1.16)

In a physical system, this may correspond to the case in which the dynamic system is
subjected to some input or forcing function f (t).

1.3.1 General Solution

The general solution of a nonhomogeneous ODE is the sum of the solution of the homo-
geneous part of the ODE and a particular solution of the nonhomogeneous ODE. It is
simple to show mathematically why this is the case. Let the solution of the homogeneous
part of the ODE be denoted by yh(t) and the particular solution by yp(t),

a0
dn yh

dtn
+ a1

dn−1 yh

dtn−1
+ · · · + an−1

dyh

dt
+ an yh = 0,

a0
dn yp

dtn
+ a1

dn−1 yp

dtn−1
+ · · · + an−1

dyp

dt
+ an yp = f (t). (1.17)

Adding the two equations and recognizing the property

di (yh + yp)

dti
= di yh

dt i
+ di yp

dt i
(1.18)

for any i , we have

a0
dn(yh + yp)

dtn
+ a1

dn−1(yh + yp)

dtn−1
+ · · · + an−1

d(yh + yp)

dt

+ an(yh + yp) = f (t), (1.19)
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1.3 Nonhomogeneous ODE with Constant Coefficients 9

Table 1.1: Forcing Functions and Particular Solutions

Forcing Function f (t) Particular Solution yp(t) to Try

Constant a
t at + b
t2 at2 + bt + c
sin ωt a sin ωt + b cos ωt
eσ t aeσ t

t2eσ t cos ωt at2eσ t cos ωt + bt2eσ t sin ωt

which implies that

y(t) = yh(t) + yp(t) (1.20)

is the general solution to the nonhomogeneous ODE. From previous sections, we know
how to find the general form of the homogeneous solution. It is very important to realize
that the unknown coefficients c1, c2, . . . , cn in the homogeneous solution must not be
determined at this stage. These coefficients can be determined only after a particular
solution has been found and the general solution is constructed. This is because any
initial conditions of the system are for yh(t) + yp(t), not yh(t) alone.

1.3.2 Particular Solution

For a simple forcing function f (t), it is sometimes possible to guess the form of the
particular solution with a certain number of undetermined coefficients that will make
this candidate solution satisfy the nonhomogeneous ODE. This method is known as
the method of undetermined coefficients. Table 1.1 gives some simple cases that are
commonly encountered in practice (for control applications).

EXAMPLE 1.9

Consider the nonhomogeneous ODE

d2 y

dt2
+ 2

dy

dt
+ y = et .

We try yp(t) = aet as a candidate particular solution. Substituting aet back to
the differential equation will yield a = 1/4. Thus yp(t) = et/4 is a particular
solution.

In the following, we provide a justification for the above process. Because
we know how to handle a homogeneous ODE, we try to find a way to turn our
nonhomogeneous ODE into a homogeneous one by looking for a differential
operator L such that

L

{
d2 y

dt2
+ 2

dy

dt
+ y

}
= L{et } = 0.
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10 Ordinary Differential Equations

Because it is required that et be a solution to the homogeneous problem L{et } = 0,
γ = 1 must be a characteristic root. A corresponding characteristic equation
is then γ − 1 = 0, which implies that the desired differential operator is L =
d(.)/dt − 1. Having found L , we now apply it to the original nonhomogeneous
ODE to turn it into a homogeneous one:(

d

dt
− 1

) (
d2 y

dt2
+ 2

dy

dt
+ y

)
= 0.

The solution to this homogeneous ODE, which we know how to solve, will contain
a particular solution to the original nonhomogeneous problem. The characteristic
equation for this homogeneous ODE is

(γ − 1)(γ 2 + 2γ + 1) = (γ − 1)(γ + 1)2 = 0.

Thus, the general solution has the form

y(t) = aet + c1e−t + c2te−t .

The constant a can be determined by substituting the above general solution back
into the original nonhomogeneous ODE. Note that the part c1e−t + c2te−t is
simply the solution to the homogeneous part of the ODE and will be eliminated
automatically. Completing this procedure will yield a = 1/4. Hence,

yp(t) = 1

4
et

is a particular solution and c1e−t + c2te−t is the solution to the homogeneous
part of the ODE:

yh(t) = c1e−t + c2te−t .

The general solution is the sum of the homogeneous solution and a particular
solution, as claimed. The constants c1, c2 can be determined if the general solution
y(t) = yh(t) + yp(t) is made to satisfy the initial conditions

y(0) and
dy

dt

∣∣∣
t=0

,

which must be specified.

1.4 Coupled Ordinary Differential Equations

The earlier sections in this chapter address the ODE of only a single variable. This is the
case when single-input–single-output (SISO) systems are considered. The dynamics of
a multiple-input–multiple-output (MIMO) system can be described by a set of coupled
ODEs. The set of equations

dx1

dt
= a11x1 + a12x2 + f1(t),

dx2

dt
= a21x1 + a22x2 + f2(t) (1.21)
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