Insect Diversity Conservation

This groundbreaking book is an up-to-date global synthesis of the rapidly developing and important field of insect conservation biology. Insects are by far the most speciose organisms on earth, yet barely known. They play important roles in terrestrial ecological processes and in maintaining the world as we know it. They therefore present particular conservation challenges, especially as a quarter may well become extinct in the next few decades.

This book first addresses the ethical foundation of insect conservation, and asks why we should concern ourselves with conservation of a butterfly, beetle or bug. The success of insects and their diversity, which have survived the comings and goings of glaciers, is now facing a more formidable obstacle: the massive impact of humans. After addressing threats, from invasive alien plants to global climate change, the book then explores ways in which insects and their habitats are prioritized, mapped, monitored and conserved. Landscape and species approaches are considered. Restoration, and the role of conventions and social issues are also discussed. The book is for undergraduates, postgraduates, researchers and managers both in conservation biology or entomology and in the wider biological and environmental sciences.

MICHAEL J. SAMWAYS is Professor of Entomology at the University of Stellenbosch, South Africa. He is internationally known as a conservation biologist and policy advisor.

Insect Diversity Conservation

MICHAEL J. SAMWAYS University of Stellenbosch, South Africa

© Cambridge University Press

www.cambridge.org

> PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge, CB2 2RU, UK 40 West 20th Street, New York, NY 10011–4211, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia Ruiz de Alarcón 13, 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

© Michael J. Samways 2005

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2005

Printed in the United Kingdom at the University Press, Cambridge

Typeface Swift 9.5/14 pt. System $IAT_EX 2_{\mathcal{E}}$ [TB]

A catalogue record for this book is available from the British Library

Library of Congress Cataloguing in Publication data Samways, Michael J. Insect diversity conservation / Michael J. Samways. p. cm. Includes bibliographical references and index. ISBN 0 521 78338 0 (hardback: alk. paper) – ISBN 0 521 78947 8 (pbk.: alk. paper) 1. Insects-Ecology. 2. Wildlife conservation. 3. Biological diversity conservation. I. Title. QL496.4S364 2005 333.95'5716 – dc22 2004048882

ISBN 0 521 78338 0 hardback ISBN 0 521 78947 8 paperback

The publisher has used its best endeavours to ensure that the URLs for external websites referred to in this book are correct and active at the time of going to press. However, the publisher has no responsibility for the websites and can make no guarantee that a site will remain live or that the content is or will remain appropriate.

Contents

	Preface	page ix
	Cover picture	xi
Part I	The need for insect diversity conservation	1
1	Ethical foundation for insect conservation	3
	1.1 Introduction	4
	1.2 Environmental philosophy and insect conservation	4
	1.3 Insect utility	9
	1.4 Insect rights and species conservation	11
	1.5 Spiritual conceptions	13
	1.6 Summary	15
2	The special case of insects in conservation biology	16
	2.1 Introduction	16
	2.2 Insect radiation	18
	2.3 Bauplan, flight and insect conservation	22
	2.4 Polymorphisms	23
	2.5 Insect diversity and the landscape	25
	2.6 Global insect species richness	28
	2.7 Survival in prehistorical times	29
	2.8 Current extinctions	32
	2.9 The taxonomic challenge	33
	2.10 The perception challenge	35
	2.11 Pest insects and population crashes	36
	2.12 Summary	37
3	Insects and the conservation of ecosystem processes	39
	3.1 Introduction	39
	3.2 Insects as keystone organisms	40
	3.3 Insect ecosystem engineers and soil modifiers	41
	3.4 Insects as food for other animals	42
	3.5 Insect dispersal	42
	3.6 Insect pollinators	45
	3.7 Insect herbivores	46
	3.8 Insect parasitoids and predators	49
	3.9 Insects and disease	50

vi	Contents
V1	Contents

	3.10 Ecosystem diversity and insect diversity	52
	3.11 Insects and the naturally changing landscape	52
	3.12 Significance of ecological connectance	53
	3.13 Summary	54
Part II	Insects and the changing world	57
4	Degradation and fragmentation of ecosystems	59
	4.1 Introduction	59
	4.2 Environmental contamination	61
	4.3 Pesticides	63
	4.4 Agriculture and afforestation	65
	4.5 Urbanization and impact of structures	68
	4.6 Deforestation and logging	73
	4.7 Transformation of grasslands, savanna and	
	Mediterranean-type ecosystems	78
	4.8 Deterioration and loss of aquatic systems	80
	4.9 Pressure on special systems	84
	4.10 Overcollecting	86
	4.11 Summary	87
5	Responses by insects to the changing land mosaic	89
	5.1 Introduction	89
	5.2 Behavioural responses	90
	5.3 Population response and local extinction	98
	5.4 Community response and long-term prognosis	100
	5.5 Genetic changes	107
	5.6 Summary	110
6	Threats from invasive aliens, biological control and genetic	
	engineering	113
	6.1 Introduction	114
	6.2 Invasive alien plants	114
	6.3 Invasive alien vertebrates	118
	6.4 Invasive alien insects	119
	6.5 Risks of introducing insect natural enemies	124
	6.6 Risks of introducing insect pathogens	127
	6.7 Risks of genetic engineering	130
	6.8 Summary	134
7	Global climate change and synergistic impacts	136

		Contents	vii
	7.1 Introduction	136	
	7.2 Ecosystem response to global climate change	137	
	7.3 Changes in species' geographical ranges	143	
	7.4 Synergisms and future perspectives	145	
	7.5 Summary	149	
Part III	Conserving and managing insect diversity	153	
8	Methods, approaches and prioritization criteria	155	
	8.1 Introduction	155	
	8.2 Towards an 'Earth ethic'	156	
	8.3 Identifying geographical areas for conservation act	tion 158	
	8.4 Systematic reserve selection	162	
	8.5 Use of surrogates in conservation planning	163	
	8.6 Coarse and fine filters	167	
	8.7 Plant surrogates	173	
	8.8 Animal surrogates	174	
	8.9 Phylogenetic considerations	175	
	8.10 Are 'umbrella' and 'flagship' species of value in		
	conservation planning?	176	
	8.11 Summary	178	
9	Mapping, inventorying and monitoring	180	
	9.1 Introduction	180	
	9.2 Mapping	181	
	9.3 Inventorying	186	
	9.4 Monitoring	192	
	9.5 Red Listing	195	
	9.6 Application of IUCN Red List Criteria at regional o	r	
	national levels	198	
	9.7 Insects as bioindicators	199	
	9.8 Reference sites	203	
	9.9 Summary	203	
10	Managing for insect diversity	206	
	10.1 Introduction	206	
	10.2 Importance of parks, reserves and remnant patche	s 207	
	10.3 Importance of landscape heterogeneity	212	
	10.4 Countryside-wide management	215	
	10.5 Importance of patch size relative to habitat quality	217	
	10.6 Simulating natural conditions and traditional practice	ctices 222	

viii Contents

	10.7 Corridors	226
	10.8 Landscape management in urban areas	231
	10.9 Summary	232
11	Restoration of insect diversity	234
	11.1 Introduction	234
	11.2 Principle of restoration triage	235
	11.3 Restoration of species or processes?	237
	11.4 Coarse-filter and fine-filter approaches to restoration	240
	11.5 Insect gardening	244
	11.6 Species-specific recovery plans	246
	11.7 Summary	250
12	Conventions and social issues in insect diversity conservation	252
	12.1 Introduction	252
	12.2 The international arena	253
	12.3 National issues	256
	12.4 Overcoming the perception challenge	257
	12.5 Butterfly houses and increasing conservation awareness	259
	12.6 Deadstock trade	261
	12.7 Butterfly farming	262
	12.8 Summary	263
	References	266
	Index	316

Preface

Some say that 'the cockroach' will be the last species on Earth to survive. Then it has been calculated that one gravid aphid, left to reproduce with zero mortality, will, after one year, cover the globe with an aphid layer over 140 km thick. Not forgetting too, that flies and fleas vector disease. So, why should we even consider conserving insects? Quite simply, without insects, the likelihood is that the world as we know it would be radically changed in a matter of days. Besides, it is only a tiny minority of insects that harm our lives. These two faces of insects, friend and foe, are just one of the several paradoxes that characterize insect conservation from other facets of taxon-based conservation biology. Our impacting on landscapes can turn a benign insect species into a pest, while, on the other hand, it may cause an extinction of another species. Focusing on the land mosaic, its composition, structure and function, is thus central to insect conservation.

We have no idea of the outcomes from our modification of the biosphere. Blindfolded, we are turning the many faces of the Rubik Cube of biological diversity conservation in the hope that all the faces will match. It is not that we are incapable, it is just that the world is so complex. A thousand species, for example, in the same community (not an unreasonable figure) potentially produces 0.5 million interactions. In addition, strengths of those interactions, and hence outcomes, also vary.

Bleak as this may seem, we are beginning to lift the blindfold and make rational decisions for conserving biological diversity. Insects and their interactions are a major component of that diversity. Indeed, insects are virtual ambassadors for biological diversity. These little animals, by their great variety and abundance, play an unheralded yet pivotal role in our, and many other organisms', lives. We now have a major challenge before us: How do we go about conserving this largely unseen, unknown majority?

The ambassadorial status of insects for terrestrial and aquatic ecosystems is the reasoning behind the title 'Insect Diversity Conservation'. 'Biological' is simply replaced by 'Insect'. This is not in pursuit of entomological chauvinism but rather to emphasize that insects are central, yet with many special features, to biodiversity conservation.

The aim here is to overview and critically appraise the conservation of insect diversity. It focuses strongly on the variety and differences among insects, and links these to landscape and other large-scale conservation initiatives. After all, insects do not rule the world alone. This is not, though, to ignore special cases where a particular insect species requires particular conservation attention.

x Preface

Conservation cannot be done without clearly defining our feelings and motives for why we are doing it. This goes beyond simply the utilitarian value of insects for us. This field of environmental ethics in relation to insects is therefore addressed in the first chapter, and is a foundation for all that follows. In Chapter 2, the special case for insects, in comparison with and in contrast to other organisms, is argued. This is not to say that insect conservation is tangential to mainstream conservation. Rather, it is central, especially as insects play so many keystone roles in non-marine ecosystems. These roles and others are discussed in Chapter 3. These first three chapters together are the launching point for the rest of the book, and address why there is the need for insect diversity conservation. Part II (Chapters 4–7) addresses threats to insect variety, and emphasizes that many of these threats are multiplicative, with one threat compounding another. Part III (Chapters 8–12) then reviews the options that we have to ameliorate these threats.

As insects are now featuring much more strongly in biodiversity conservation, the field of insect conservation biology has grown enormously in recent years. It is clear too that there are many varying, even conflicting conclusions when various studies are compared. These differences seem to arise mainly from three different perspectives: differences in spatial scale of the study, differences in biogeographical regions, and differences in the focal taxa used. This is healthy and indicative of a rapidly growing field of study. Nevertheless, some general principles are beginning to emerge, and in terms of management, these are synthesized in Part III.

Insect conservation has been a rapid growth area in recent years, often with intense debate. In response, I really do appreciate the stimulating feedback from Jonathan Ball, Andy Beattie, Steve Compton, Eduardo Galante, Henk Geertsema, Justin Gerlach, Jeff Lockwood, Melodie McGeoch, Tim New, Paul Pearce-Kelly, Andrew Pullin, Nigel Stork and Stuart Taylor, as well as the lively minds of my research students over the years. Many authors kindly made available text figures, and these are acknowledged with each figure.

This work would not have been possible without the amazing support of Colleen Louw (processing text), Stuart Taylor (processing figures) and James Pryke (processing references). Anni Coetzer produced the beautiful cover and text illustrations, so rich in symbolism. Ward Cooper and Jo Bottrill saw production of the book to its completion. My warm thanks to these friends for making this such an enjoyable enterprise.

Cover picture

In an ever-changing, human-transformed world, we often overlook the importance of each little creature in our earthly ecosystem. Conscious and moral Man holds the future well-being of the world in his hand. Yet the race is against time, that these noble efforts are not in vain. Insects are an ancient, ecologically significant and beautiful component of the world, symbolized here by the dragonfly. The variety of insect life around us, be it in our garden or city park, are a constant reminder that these small but numerous animals are part of the fabric and health of our planet. By destroying these living creatures and their habitat, the delicate glass of our ecosystem will shatter, leaving us with a transformed, bare world, devoid of colour and life as we once knew it. Time is now short for ensuring the future of this amazing insect diversity.

Anni Coetzer