
CHAPTER ONE

Introduction

In this book, gravity waves on water and their interaction with oscillating systems
(having zero forward speed) are approached from a somewhat interdisciplinary
point of view. Before the matter is explored in depth, a comparison is briefly
made between different types of waves, including acoustic waves and electromag-
netic waves, drawing the reader’s attention to some analogies and dissimilarities.
Oscillating systems for generating or absorbing waves on water are analogues of
loudspeakers or microphones in acoustics, respectively. In electromagnetics the
analogues are transmitting or receiving antennae in radio engineering, and light-
emitting or light-absorbing atoms in optics.
The discussion of waves is, in this book, almost exclusively limited to waves

of sufficiently low amplitudes for linear analysis to be applicable. Several other
books (see, e.g., the monographs by Mei,1 Faltinsen,2 Sarpkaya and Isaacson3

or Chakrabarti4) treat the subject of large ocean waves and extreme wave loads,
which are so important for determining the survival ability of ships, harbours and
otherocean structures. In contrast, thepurposeof this book is to conveya thorough
understanding of the interaction between waves and oscillations, when the ampli-
tudes are low, which is truemost of the time. For example, on one hand, for awave-
power plant the income is determined by the annual energy production, which is
essentially accrued during most times of the year, when amplitudes are low, that
is, when linear interaction is applicable. On the other hand, as with many other
types of ocean installations, wave-power plants also have their expenses, to a large
extent, determined by the extreme-load design. The technological aspects related
to conversion and useful application of wave energy are not covered in the present
book. Readers interested in such subjects are referred to other literature.5–7

The content of the subsequent chapters is outlined below. At the end of each
chapter, except the first, there is a collection of problems.
Chapter 2 gives a mathematical description of free and forced oscillations in

the time domain as well as in the frequency domain. An important purpose is
to introduce students to the very useful mathematical tool represented by the
complex representation of sinusoidal oscillations. The mathematical connection
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2 INTRODUCTION

between complex amplitudes and Fourier transforms is treated. Linear systems
are discussed in a rather general way, and for a causal linear system in particular,
theKramers-Kronig relations are derived. A simplemechanical oscillating system
is analysed to some extent, the concept of mechanical impedance is introduced
and a discussion of energy accounting in the system is included to serve as a tool
for physical explanation, in subsequent chapters, of the so-called hydrodynamic
“added mass”.
In Chapter 3 a brief comparison is made of waves on water with other types of

waves, in particular with acoustic waves. The concepts of wave dispersion, phase
velocity and group velocity are introduced. In addition the transport of energy
associated with propagating waves is considered, and the radiated power from a
radiation source (wave generator) is mathematically expressed in terms of a phe-
nomenologically defined radiation resistance. The radiation impedance, which is
a complex parameter, is also introduced in a phenomenological way. For mechan-
ical waves (such as acoustic waves and waves on water) its imaginary part may be
represented by an added mass. Finally in Chapter 3, an analysis is given of the ab-
sorption of energy from a mechanical wave by means of a mechanical oscillation
system of the simple type considered in Chapter 2. The optimum parameters of
this system for maximising the absorbed energy are discussed. The maximum is
obtained at resonance.
From Chapter 4 onward, a deeper hydrodynamic discussion of water waves

is the main subject. With an assumption of inviscid and incompressible fluid and
irrotational fluid motion, the hydrodynamic potential theory is developed. With
the linearisation of fluid equations and boundary conditions, the basic equations
for low-amplitude waves are derived. In most of the following discussions, either
infinite water depth or finite, but constant, water depth is assumed. Dispersion
and wave-propagation velocities are studied, and plane and circular waves are
discussed in some detail. Also non-propagating, evanescent plane waves are con-
sidered. Another studied subject is wave-transported energy andmomentum. The
spectrum of real sea waves is treated only briefly in the present book. The rather
theoretical Sections 4.7 and 4.8, which make extensive use of Green’s theorem,
may be omitted at the first reading, and then be referred to as needed during
the study of the remaining chapters of the book. Whereas most of Chapter 4
is concerned with discussions in the frequency domain, the last section contains
discussions in the time domain.
The subject of Chapter 5 is interactions between waves and oscillating bodies,

including wave generation by oscillating bodies as well as forces induced by waves
on the bodies. Initially six-dimensional generalised vectors are introduced which
correspond to the six degrees of freedom for the motion of an immersed (three-
dimensional) body. The radiation impedance, known from the phenomenolog-
ical introduction in Chapter 3, is now defined in a hydrodynamic formulation,
and, for a three-dimensional body, extended to a 6× 6 matrix. In a later part of
the chapter the radiation impedance matrix is extended to the case of a finite
number of interacting, radiating, immersed bodies. For this case the generalised
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INTRODUCTION 3

excitation force vector is decomposed into two parts, the Froude-Krylov part and
the diffraction part, which are particularly discussed in the “small-body” (or “long-
wavelength”) approximation. From Green’s theorem (as mentioned in the sum-
mary of Chapter 4) several useful reciprocity theorems are derived, which relate
excitation force and radiation resistance to each other or to “far-field coefficients”
(or “Kochin functions”). Subsequently these theorems are applied to oscillating
systems consisting of concentric axisymmetric bodies or of two-dimensional bod-
ies. The occurrence of singular radiation-resistance matrices is discussed in this
connection. Whereas most of Chapter 5 is concerned with discussions in the fre-
quency domain, two sections, Sections 5.3 and 5.9, contain discussions in the time
domain. In the latter section motion response is the main subject. In the for-
mer section two hydrodynamic impulse-response functions are considered; one of
them is causal and, hence, has to obey the Kramers-Kronig relations.
The extraction of wave energy is the subject of Chapter 6, which starts by

explaining wave absorption as a wave-interference phenomenon. Toward the end
of the chapter (Section 6.4) a study is made of the absorption of wave energy by
means of a finite number of bodies oscillating in several (up to six) degrees of
freedom. This discussion provides a physical explanation of the quite frequently
encountered cases of singular radiation-resistance matrices, as mentioned above
(also see Sections 5.7 and 5.8).However, the central part of Chapter 6 is concerned
with wave-energy conversion which utilises only a single body oscillating in just
one degree of freedom. With the assumption that an external force is applied to
the oscillating system, for the purpose of power takeoff and optimum control of
the oscillation, this discussion has a different starting point than that given in the
last part of Chapter 3. The conditions for maximising the converted power are
also studied for the case in which the body oscillation has to be restricted as a
result of its designed amplitude limit or because of the installed capacity of the
energy-conversion machinery.
Oscillating water columns (OWCs) are mentioned briefly in Chapter 4 and

considered in greater detail in Chapter 7, where their interaction with incident
waves and radiated waves is the main subject of study. Two kinds of interaction
are considered: the radiation problem and the excitation problem. The radiation
problem concerns the radiation of waves which is due to an oscillating dynamic air
pressure above the internal air-water interfaces of theOWCs. The excitation prob-
lem concerns the oscillationwhich is due to an incident wavewhen the dynamic air
pressure is zero for all OWCs. Comparisons are made with corresponding wave-
body interactions. Also, wave-energy extraction by OWCs is discussed. Finally in
this chapter, the case is considered in which several OWCs and several oscillating
bodies are interacting with waves.
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CHAPTER TWO

Mathematical Description of Oscillations

In this chapter, which is a brief introduction to the theory of oscillations, a simple
mechanical oscillation system is used to introduce concepts such as free and forced
oscillations, state-space analysis and representation of sinusoidally varying physi-
cal quantities by their complex amplitudes. In order to be somewhatmore general,
causal and non-causal linear systems are also looked at and Fourier transform is
used to relate the system’s transfer function to its impulse response function.
With an assumption of sinusoidal (or “harmonic”) oscillations, some important
relations are derived which involve power and stored energy on one hand, and the
parameters of the oscillating system on the other hand. The concepts of resonance
and bandwidth are also introduced.

2.1 Free and Forced Oscillations of a Simple Oscillator

Let us consider a simplemechanical oscillator in the formof amass-spring-damper
system. A mass m is suspended through a spring S and a mechanical damper R,
as indicated in Figure 2.1. Because of the application of an external force F the
mass has a position displacement x from its equilibrium position.
Newton’s law gives

mẍ= F + FR + FS, (2.1)

where the spring force and the damper force are FS = −Sx and FR = −Rẋ,
respectively.
Ifweassume that the springand thedamperhave linear characteristics, then the

“stiffness” S and the “mechanical resistance” Rare coefficients of proportionality,
independent of the displacement x and of the velocity u= ẋ. Then Newton’s law
gives the following linear differential equation with constant coefficients,

mẍ+ Rẋ+ Sx= F, (2.2)

where an overdot is used to denote differentiation with respect to time t .
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2.1 FREE AND FORCED OSCILLATIONS OF A SIMPLE OSCILLATOR 5

Figure 2.1: Mechanical oscillator composed of a mass-spring-damper
system.

2.1.1 Free Oscillation

If the external force is absent, that is, F = 0, wemay have so-called free oscillation
if the system is released at a certain instant t = 0, with some initial energy

W0 = Wp0 + Wk0 = Sx20/2+ mu20/2, (2.3)

written here as a sum of potential and kinetic energy, where x0 is the initial dis-
placement and u0 the initial velocity. It is easy to show (see Problem 2.1) that the
general solution to Eq. (2.2), when F = 0, is

x = (C1 cosωdt + C2 sinωdt) e−δt , (2.4)

where

δ = R/2m, ω0 =
√
S/m, ωd =

√
ω20 − δ2 (2.5)

are the damping coefficient, the undamped natural angular frequency and the
damped angular frequency, respectively. The integration constantsC1 andC2 may
be determined from the initial conditions as (see Problem 2.1)

C1 = x0, C2 = (u0 + x0δ)/ωd. (2.6)

For the particular case of zero damping force, the oscillation is purely sinusoidal
with a period 2π/ω0, which is the so-called natural periodof the oscillator. The free
oscillation as given by Eq. (2.4) is an exponentially damped sinusoidal oscillation
with “period” 2π/ωd, during which a fraction 1− exp(−4πδ/ωd) of the energy in
the system is lost, as a result of power consumption in the damping resistance R.
We define the oscillator’s quality factor Q as the ratio between the stored energy
and the average energy loss during a time interval of length 1/ωd:

Q = (
1− e−2δ/ωd

)−1
. (2.7)

If the damping coefficient δ is small, then Q is large.When δ/ω0� 1, the following
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6 MATHEMATICAL DESCRIPTION OF OSCILLATIONS

expansions (see Problem 2.2) may be useful:

Q = ω0

2δ

(
1+ δ

ω0
− 1
6

δ2

ω20
+ O

{
δ3

ω30

})

≈ ω0

2δ
= ω0m

R
= S

ω0R
= (Sm)1/2

R
, (2.8)

δ

ω0
= 1
2Q

(
1+ 1

2Q
+ 5
24Q2

+ O{Q−3}
)

≈ 1
2Q

. (2.9)

As a result of the energy loss, the freely oscillating system comes eventually to
rest. The free oscillation is “overdamped” if ωd is imaginary, that is, if δ > ω0

or R > 2(Sm)1/2. [The quality factor Q, as defined by Eq. (2.7), is then complex
and it loses its physical significance.] Then the general solution of the differential
equation (2.2) is a linear combination of two real, decaying exponential functions.
The case of “critical damping”, that is, when R = 2(Sm)1/2 or ωd = 0, requires
special consideration, which we omit here. (See, however, Problem 2.11.)

2.1.2 Forced Oscillation

When the differential equation (2.2) is inhomogeneous, that is, if F = F(t) �= 0,
the general solution may be written as a particular solution plus the general solu-
tion (2.4) of the corresponding homogeneous equation (corresponding to F = 0).
Let us now consider the case in which the driving external force F(t) has a
sinusoidal time variation with angular frequency ω = 2π/T, where T is the pe-
riod. Let

F(t)= F0cos(ωt + ϕF), (2.10)

where F0 is the amplitude and ϕF the phase constant for the force. It is convenient
to choose a particular solution of the form where

x(t)= x0cos(ωt + ϕx) (2.11)

is the position, and

u(t)= ẋ(t)=u0cos(ωt + ϕu) (2.12)

is the corresponding velocity of the mass m. Here the amplitudes are related by
u0= ωx0 and the phase constants by ϕu −ϕx = π/2. ForEq. (2.11) to be a particular
solution of the differential equation (2.2), it is necessary that (see Problem 2.3)
the excursion amplitude is

x0= u0
ω

= F0
|Z |ω (2.13)

and that the phase difference

ϕ =ϕF − ϕu = ϕF − ϕx − π/2 (2.14)
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2.1 FREE AND FORCED OSCILLATIONS OF A SIMPLE OSCILLATOR 7

is an angle which is in quadrant no. 1 or no. 4, and which satisfies

tanϕ = (ωm− S/ω)/R. (2.15)

Here

|Z | = {R2 + (ωm− S/ω)2}1/2 (2.16)

is the absolute value (modulus) of the complex mechanical impedance, which is
discussed later.
The “forced oscillation”, Eq. (2.11) or (2.12), is a response to the driving force,

Eq. (2.10). Let us now assume that F0 is independent of ω, and then discuss the
responses x0(ω) and u0(ω), starting with u0(ω)= F0/|Z(ω)|. Noting that |Z |min= R
forω = ω0= (S/m)1/2 and that |Z | → ∞ forω = 0 aswell as forω → ∞, we see that
(u0/F0)max= 1/R for ω = ω0 and that u0(0)=u0(∞)= 0. We have resonance at
ω =ω0, where the “reactive” contributionωm− S/ω to themechanical impedance
vanishes. Graphs of the non-dimensionalised velocity response

√
Smu0/F0 versus

ω/ω0 are shown in Figure 2.2 for
√
Sm/Requal to 10 and 0.5. Note that the graphs

are symmetric with respect to ω = ω0 when the frequency scale is logarithmic. The

Figure 2.2: Frequency response of relation between velocity u and applied force F in normalised
units, for two different values of the damping coefficient. a) Amplitude (modulus) response with
both scales logarithmic. b) Phase response with linear scale for the phase difference.
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8 MATHEMATICAL DESCRIPTION OF OSCILLATIONS

phase difference ϕ as given by Eq. (2.15) is also shown in Figure 2.2. The graphs
of Figure 2.2, where the amplitude response is presented in a double logarithmic
diagram and the phase response in a semilogarithmic diagram, are usually called
Bode plots or Bode diagrams.8 Next, we consider the resonance bandwidth, that
is, the frequency interval (
ω)res, where

u0(ω)
F0

>
1√
2

(
u0
F0

)
max

= 1

R
√
2
, (2.17)

that is, where the kinetic energy exceeds half of the maximum value. At the upper
and lower edges of the interval, ωu and ωl , the two terms of the radicand in
Eq. (2.16) are equally large. Thus, we have

ωum− S/ωu = R= S/ωl − ωlm. (2.18)

Instead of solving these two equations, we note from the above-mentioned sym-
metry that ωuωl =ω20 = S/m, that is, S/ωu =mωl and S/ωl =mωu. Evidently

(
ω)res=ωu − ωl = R/m= 2δ. (2.19)

The relative bandwidth is

(
ω)res
ω0

= 2δ
ω0

= R√
Sm

, (2.20)

and it is seen that this is inverse to the maximum non-dimensionalised velocity
response

√
Smu0(ω0)/F0= √

Sm/R as indicated on the graph in Figure 2.2. From
Eq. (2.8) we see that this is approximately equal to the quality factor Q, when this
is large (Q � 1). In the same case,

(
ω)res/ω0 ≈ 1/Q. (2.21)

Next we consider the excursion response, which, in non-dimensionalised form,
may be written as Sx0(ω)/F0. It equals unity for ω = 0 and zero for ω = ∞. At
resonance its value is

Sx0(ω0)/F0= S/ω0R= (Sm)1/2/R= ω0/2δ, (2.22)

as obtained by using Eqs. (2.13) and (2.16). Note that x0(ω) has its maximum at
a frequency which is lower than the resonance frequency. It can be shown (see
Problem 2.4) that, if R< (2Sm)1/2 or δ < ω0/

√
2, then

Sx0,max
F0

= ω0

2δ

(
1− δ2

ω20

)−1/2
at ω = ω0

(
1− 2δ

2

ω20

)1/2
, (2.23)

and if R> (2Sm)1/2 then

Sx0,max
F0

= S x0(0)
F0

= 1. (2.24)

For large values of Q there is only a small difference between x0(ω0)/F0 and
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2.1 FREE AND FORCED OSCILLATIONS OF A SIMPLE OSCILLATOR 9

x0,max/F0. Using Eq. (2.9) we find

Sx0(ω0)
F0

= Q− 1
2

+ 1
24Q

+ O{Q−2} (2.25)

and

Sx0,max
F0

= Q− 1
2

+ 1
6Q

+ O{Q−2} (2.26)

for

ω = ω0

(
1− 1

4Q2
+ O{Q−3}

)
. (2.27)

2.1.3 Electric Analogue: Remarks on the Quality Factor

For readers with a background in electric circuits, it may be of interest to note that
the mechanical system of Figure 2.1 is analogous to the electric circuit shown in
Figure 2.3, where an inductance m, a capacitance 1/S and an electric resistance
R are connected in series. The force F is analogous to the driving voltage, the
position x is analogous to the electric charge on the capacitance and the velocity
u is analogous to the electric current. If Kirchhoff’s law is applied to the circuit,
Eq. (2.2) results. The “capacitive reactance” S/ω is related to the capacitance’s
ability to store electric energy (analogous to potential energy in the spring S of
Figure 2.1), and the “inductive reactance” ωm is related to the inductance’s ability
to store magnetic energy (analogous to kinetic energy in the mass of Figure 2.1).
The electric (or potential) energy is zero when x(t)= 0, and the magnetic (or
kinetic) energy is zero when u(t)= ẋ(t)= 0. The instants for x(t)= 0 and those
for u(t)= 0 are displaced by a quarter of a period π/2ω0, and at resonance the
maximum values for the electric and magnetic (or potential and kinetic) energies
are equal,mu20/2=mω20x

2
0/2= Sx20/2, becausemω0= S/ω0. Thus, at resonance the

stored energy is swinging back and forth between the two energy stores, twice
every period of the system’s forced oscillation.
By Eq. (2.7) we have defined the quality factor Q as the ratio between the

stored energy and the average energy loss during a time interval 1/ωd of the free
oscillation. An alternative definition would have resulted if instead the forced
oscillation at resonance had been considered, for a time interval 1/ω0 (and not
1/ωd). The stored energy is u20/2 and the average lost energy is Ru

2
0/2ω0 during

a time 1/ω0 (as is shown in more detail later, in Section 2.3). Such an alterna-
tive quality factor equals the right-hand side of the approximation (2.8), and

Figure 2.3: Electric analogue of the mechanical
system shown in Figure 2.1.
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10 MATHEMATICAL DESCRIPTION OF OSCILLATIONS

would have been equal to the inverse of the relative bandwidth (2.20), to the
non-dimensionalised excursion amplitude (2.22) at resonance (i.e., the ratio be-
tween the excursion at resonance and the excursion at zero frequency), and to the
ratio of the reactance parts ω0m and S/ω0 to the damping resistance R. The term
quality factor is usually used only when it is large, Q� 1. In that case the relative
difference between the two definitions is of little importance.

2.2 Complex Representation of Harmonic Oscillations

2.2.1 Complex Amplitudes and Phasors

When sinusoidal oscillations are dealt with, it is mathematically convenient to
apply the method of complex representation, involving complex amplitudes and
phasors. A great advantage with the method is that differentiation with respect to
time is simply represented by multiplying with iω, where i is the imaginary unit
(i =√−1).We consider again the forced oscillations represented by the excursion
response x(t) or velocity response u(t) that is due to an applied external sinusoidal
force F(t), as given by Eqs. (2.11), (2.12) and (2.10), respectively.
With the use of Euler’s formulas

eiψ = cosψ + i sinψ, (2.28)

or, equivalently,

cosψ = (eiψ + e−iψ)/2, sinψ = (eiψ − e−iψ)/2i, (2.29)

the oscillating quantity x(t) may be rewritten as

x(t) = x0cos(ωt + ϕx)

= x0
2
ei(ωt +ϕx) + x0

2
e−i(ωt + ϕx)

= x0
2
eiϕx eiωt + x0

2
e−iϕx e−iωt . (2.30)

Introducing the complex amplitude (see Figure 2.4),

x̂= x0eiϕx = x0 cosϕx + i x0 sinϕx, (2.31)

Figure 2.4: Complex-plane decomposition of the complex amplitude x̂.
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