The Dynamics of Fluidized Particles

Recent years have seen major progress in the development of equations to describe the motion of fluid–particle mixtures and their application to a limited range of problems. With rapid advances in numerical methods and computing power we are now presented with new opportunities to use direct integration of these equations in the solution of complex practical problems. However, results so obtained are only as good as the equations on which they are based, so it is essential to have a clear understanding of the underlying physics and the extent to which it is reflected properly in these equations.

In *The Dynamics of Fluidized Particles*, the author formulates these equations carefully and then to describe some important existing applications that serve to test their ability to predict salient phenomena. This account will be of value to both novices and established researchers in the field, and also to people interested in applying the equations to practical engineering problems.

Roy Jackson is a Professor of Engineering & Applied Science Emeritus at Princeton University. He has received many academic honours, including the School of Engineering Distinguished Teaching Award from Princeton University, and is a fellow of the Royal Society. The American Chemical Society has also recently published a “festschrift” in honour of his many research contributions.
The Dynamics of Fluidized Particles

ROY JACKSON

Princeton University
In memory of Susan
Contents

Preface

1 The mathematical modelling of fluidized suspensions .. 1
1.1 Introduction .. 1
1.2 A simple application of equations of the two-fluid type .. 4
1.3 Scope of this text .. 13
References .. 15

2 Equations of motion .. 17
2.1 Averaged equations ... 17
2.2 Buoyancy .. 26
2.3 Explicit closures of the equations ... 32
2.3.1 Closure for small Stokes number .. 34
2.3.2 Closure for large Stokes number .. 36
2.3.3 Other comments on explicit closures ... 46
2.4 Empirical closures .. 48
2.5 Approximations ... 56
2.6 Discussion of averaging procedures .. 59
References .. 62

3 Fluidization and defluidization .. 65
3.1 Introduction .. 65
3.2 The observed behaviour of dense particle assemblies under deformation 66
3.3 Constitutive relations for dense, slowly deforming granular materials 70
3.4 The processes of fluidization and defluidization ... 78
3.4.1 Theory ... 78

vii
Contents

3.4.2 Predictions 82
3.4.3 Experiments 90
References 97

4 Stability of the uniformly fluidized state 99
4.1 Introduction 99
4.2 Small perturbations of the uniformly fluidized state 103
4.3 The dispersion relations 107
4.4 The stability of the uniformly fluidized state 117
4.5 Behaviour of the dominant disturbance in unstable beds 124
4.6 Experimental evidence 130
4.7 Some other aspects of stability 142
4.7.1 Stability analyses including a balance of pseudothermal energy 142
4.7.2 Beds with an extended interval of stable expansion 144
4.7.3 Circulator instabilities 145
References 150

5 Bubbles and other structures in fluidized beds 153
5.1 Introduction 153
5.2 Davidson’s analysis of the motion of fully developed bubbles 157
5.3 Other early analyses of bubble motion 163
5.4 Experimental tests of theories of the motion of a fully developed bubble 176
5.5 Extensions of stability analysis and the genesis of bubbles and other structures 182
5.5.1 Introduction 182
5.5.2 Nonlinear treatments of one-dimensional waves 183
5.5.3 Computational exploration of two-dimensional transients and fully developed structures 199
5.5.4 Structures other than bubbles 221
5.5.5 Other work on two-dimensional disturbances and bubbles 224
References 230

6 Riser flow 233
6.1 Introduction 233
6.2 Fully developed “laminar” flow of a gas–particle mixture in a vertical pipe 236
6.3 Approximate treatment of pseudoturbulent flow of a gas–particle mixture in a vertical pipe 256
6.4 The model of Hrenya and Sinclair 278
Contents

6.5 Computational fluid dynamic modelling of riser flow 288
References 295

7 Standpipe flow 298
7.1 Introduction 298
7.2 Analysis of a simple standpipe system 303
 7.2.1 Definition of the problem 303
 7.2.2 Motion of material in the feed hopper 306
 7.2.3 Motion of material in the standpipe 308
 7.2.4 Motion of material in the discharge region 309
 7.2.5 Matching conditions 310
 7.2.6 Sketch of the solution procedure 311
7.3 Predicted behaviour of the unaerated standpipe 313
7.4 Predicted behaviour of the aerated standpipe 321
7.5 General comments 328
References 330

Author Index 333
Subject Index 336
Preface

This book addresses the motion of systems of solid particles immersed in a fluid that may be a liquid or a gas. The focus is on the range of particle concentrations of greatest interest in the operation of process plants, that is, solids volume fractions anywhere from a few percent to random close packing. As typical process applications we might mention hoppers and bunkers, dense fluidized beds, pneumatic transport lines, circulating fluidized beds, standpipes, cyclones, riser reactors, and slurry pipelines, but the same ideas can be used in nonprocess applications such as sediment transport, landslides, and avalanches. The book is intended as an introduction to this field for graduate students and others entering it for the first time but, by drawing together widely scattered material, it is hoped that it may also serve as a useful overview for more experienced workers. Most of the material is covered somewhere in the existing literature, to which the reader’s attention is directed, but some appears here for the first time, for example, parts of Chapters 3 and 4.

Many of the figures are taken from other publications and my thanks are due to the copyright holders for permission to reproduce this material. In certain cases these permissions are acknowledged in the captions of the figures in question but, in addition, I am indebted to the following organisations and individuals: Academic Press for Figures 5.1, 5.6, 5.7, and 6.32; Birkhäuser Verlag for Figure 5.26; The Institution of Chemical Engineers for Figures 5.4, 5.5, 5.9, 5.10, 5.14, 5.15, and 5.16; T. B. Anderson for Figures 4.8, 4.10, and 4.11; Y-M. Chen for Figures 7.4 and 7.5; B. Glasser for Figure 5.44; G. D. Cody for Figure 3.20; and T. J. Mountziaris for Figure 7.12.

I would not have undertaken the task of writing this book without urging by George Batchelor, whose influence has been a guiding light since my student days. A serious start on the work was made during a half year spent as a Visiting
Preface

Fellow Commoner at Trinity College, Cambridge, in 1994 and I am grateful to the College for providing this opportunity for uninterrupted thought.

Such understanding of the subject as I have owes much to informal interactions over the years with my graduate students, and also with colleagues in academia and industry, among whom I should mention Sankaran Sundaresan, John Davidson, John Hinch, Jennifer Sinclair, Bud Homsy, Don Koch, John Gwyn, George Cody, and the late Yuri Buyevich. In particular, my collaboration with Sankaran Sundaresan over the past decade has been a source of special pleasure. At a more general level the intellectual atmosphere of the Chemical Engineering Department at Princeton and stimulating discussions with Dudley Saville, Ioannis Kevrekidis, Pablo Debenedetti, Bill Russel, and Sandra Troian have served to sharpen my fluid-mechanical wits in many ways. In addition Pablo Debenedetti, in his role as department chairman, has been most supportive of my literary efforts. Finally, I must acknowledge the invaluable help provided by Patti Weiss, who has taken care of many of those time-consuming details under whose weight the project might otherwise have foundered.