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1

Introduction

Semiparametric regression can be of substantial value in the solution of complex
scientific problems. The real world is far too complicated for the human mind to
comprehend in great detail. Semiparametric regression models reduce complex
data sets to summaries that we can understand. Properly applied, they retain es-
sential features of the data while discarding unimportant details, and hence they
aid sound decision-making.

Figure 1.1 depicts a complex data set corresponding to a cancer study in the
Upper Cape Cod region of Massachusetts. Apart from the geographical location
of cancer occurrences, there are data on age and smoking status. These data are
for females.

One question of interest is whether there are elevated lung cancer rates, relative
to all cancers and after adjustment for confounders, in any particular geographi-
cal locations. There is clearly a lot of relevant information represented by the one
thousand points in this plot. However, it is very difficult to draw any conclusions
from this alone. A semiparametric regression analysis leads to Figure 1.2.

Each of the graphics in Figure 1.2 displays an easy-to-comprehend estimate of
the effect of smoking status, age, and geographical location on the occurrence of

Figure 1.1 One
thousand randomly
chosen occurrences
of female cancer in
Upper Cape Cod,
Massachusetts, for
the period 1986–
1994. The data are
categorized according
to lung cancer (red)
or other (blue) and
smoker (closed
circle) or nonsmoker
(open circle). The
size of the circle is
proportional to age.
For confidentiality
reasons, the data have
been jittered.
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2 Introduction

Figure 1.2 Graphical
outcomes from a
semiparametric
regression analysis
of Upper Cape Cod
lung cancer data: top
panel, point estimate
and approximate 95%
confidence interval for
the odds ratio of lung
cancer among smokers
who have some type
of cancer; middle
panel, estimated odds
ratio as function of
age; bottom panel,
estimated odds ratio as
function of geographic
location. Higher
values correspond
to high estimated
probabilities of lung
cancer, given cancer,
measured through the
odds ratio.
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lung cancer, relative to cancer, while controlling for each of the other two vari-
ables. Smoking status is a binary variable, so its effect can be modeled through
a single parameter. This the simplest type of parametric modeling. The graphic
shows an odds ratio estimated to be in the range 11 to 33. Age is a continuous

Theodds ratioof an
eventA, relative to
an eventB, is defined
to be the ratio of the
odds ofA to the odds
of B. Theodds ofA
is the probability ofA
occurring divided by
the probability ofA
not occurring.

variable and, in this instance, its effect can be modeled reasonably well using
parametric regression techniques. However, the nonparametric estimate shown
in the middle panel suggests an unusual type of nonlinearity and so nonparamet-
ric regression techniques may lead to an improved fit. The effect of geography is
difficult to model using traditional parametric models, and the map in Figure 1.2
is the result of a bivariate nonparametric regression technique. It clearly shows
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Table 1.1 Observed
mammary tumor rates
with phenolphthalein.
For example, 32
of the 50 animals
exposed at 25,000
ppm had tumors at
the time of death. Of
these, 18 died during
the experiment and
32 were sacrificed
at the end of the
experiment, with 15 of
the sacrificed animals
being among the 17
with tumors.

0 ppm 25,000 ppm

Tumor rates Tumor rates
Mean body Mean body

Overall Terminala weightb Overall Terminal weight

32/50 25/30 287 17/50 15/32 254

a Tumors found at terminal sacrifice time.
b Average body weight at 12 months.

regions with elevated lung cancer levels, something that is not easy to discern in
Figure 1.1. Since the effects of smoking, age, and location have been modeled
using a combination of parametric and nonparametric regression techniques, we
call this asemiparametric regressionanalysis.

In the next sections we look at other important scientific investigations where
semiparametric regression can play a useful role. We give detailed analyses of
these studies (or at least references to where careful analyses can be found) in
Chapter 18, after we have developed methodology to tackle them; Chapters 2–17
will be spent describing this methodology.

1.1 Assessing the Carcinogenicity of Phenolphthalein

The U.S. National Toxicology Program (NTP) routinely conducts animal exper-
iments to measure the toxicity of certain foods and drugs. One such example is
the assessment of the possible carcinogenicity ofphenolphthalein,an ingredient
of over-the-counter laxatives that was recently withdrawn by the U.S. Food and
Drug Administration.

A topic of recent interest in the analysis of carcinogenicity data is how to deal
with body weight. A recent editorial inSciencemagazine was highly critical of
risk assessment agencies for not controlling for the possible confounding effect
of weight, since weight loss caused by a toxic substance might protect against
cancer and mask a carcinogenic effect (Abelson 1995). It is not uncommon for
control animals to weigh substantially more than the treated animals through-
out the course of an experiment owing to toxic effects of the chemical. Several
sources have reported a lower incidence of tumors corresponding to lower body
weights (Hart et al. 1995; Haseman, Bourbina, and Eustis 1994; Seilkop 1995).
Thus, dose-related differences in body weights could affect the conclusions drawn
from these studies. Indeed, many studies conducted by the NTP have shown pro-
tective effects of the chemical being tested on certain tumor incidences. These
apparent reductions in tumor incidence across dose may be due to differences in
body weight (Hart et al. 1995). This phenomenon is illustrated in Table 1.1, taken
from the NTP study in phenolphthalein.

Figure 1.3 shows nonparametric estimates of the probabilities of four carcino-
genic outcomes as a function of weight based on a large NTP set of data on
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Figure 1.3
Estimated probability
of mammary tumor,
leukemia, pituitary
tumor, and thyroid
tumor as a function
of weight for a set
of NTP historical
controls. The shaded
region represents plus
and minus twice the
estimated (pointwise)
standard error.
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controls. It is apparent from these plots that nonlinear relationships exist and that
semiparametric models for incorporation of weight data would be beneficial.

1.2 Salinity and Fishing in North Carolina

This example comes from a larger project to predict the annual shrimp (or prawn)
harvest in Pamlico Sound, North Carolina, where shrimping occurs in the sum-
mer and autumn. It was believed that low salinity in the sound was detrimental
to the shrimp harvest and that salinity values during certain crucial springtime
periods would be useful predictors.

Salinity values were not measured regularly during the years prior to the
project. However, discharges from rivers that empty into Pamlico Sound were
known. The goal of the project was to develop a prediction model that could be
used during the spring, early enough to help the fishing industry decide whether
to rig for shrimp or instead to harvest some other species such as bluefish.

The data set has 28 cases taken from the spring periods of years 1972 to 1977.
In each case, salinity was measured at the current time period and two weeks ear-
lier, giving the variablessalinity andlagged.sal. Two other variables were
measured,discharge andtrend. The variabletrend indicated which of six
biweekly periods during March to May a case came from. It was felt thattrend
might model the effects of increasing evaporation as the weather warmed, but no
effect oftrend was detected and so that variable will be ignored.

Figure 1.4 is a scatterplot matrix of the salinity data. One can see the strong,
seemingly linear, relationship betweensalinity and lagged.sal. The re-
lationship betweensalinity and discharge is somewhat weaker and pos-
sibly nonlinear. There is not a strong relationship betweenlagged.sal and
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Figure 1.4
Scatterplot matrix of
the salinity data.
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discharge, so their effects uponsalinity should be individually estimable
with good precision.

The relationship betweensalinity anddischarge is easier to see if we
remove the effects oflagged.sal. To do this, we regressedsalinity on
lagged.sal using a straight line model (see Section 2.2). The residuals (i.e.,
the differences betweensalinity and the predicted values) are plotted against
discharge in Figure 1.5. The nonlinearity is now more evident, especially be-
cause ascatterplot smoothhas been added. This suggests that a semiparametricThe notion of

smoothing a
scatterplot will be
described extensively
in Chapters 3 and 5.

regression approach will be beneficial. The observation withdischarge equal
to nearly 34 is a “high leverage point,” meaning that it has a potentially high in-
fluence on the fitted curve. In fact, the fitted curve bends upward in the figure but
would not do so if the leverage point were excluded. However, unlike a linear
fit, the curved fit is only influenced locally – that is, on the right. We will discuss
this point further when we return to this example in Chapter 18.

1.3 Management of a Retirement Fund

Bryant and Smith (1995) describe a managerial problem based on a real data
set, but with names changed to protect confidentiality. It concerns a company,
Best Retirement Inc. (BRI), that sells retirement plans to corporations around the
United States. To capture a market niche, it has decided to target smaller firms:
those with 500 or fewer employees. The major portion of their revenue comes
from retirement packages.

For a particular type of retirement plan known as 401(k), data are available
on several attributes of the firms from the previous year. It is advantageous that
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Figure 1.5
Scatterplot of
residuals from
the regression
of salinity on
lagged.sal. A
scatterplot smooth
has been added. Note
the effect of the high
leverage point on the
extreme right.
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Figure 1.6
Estimated effect
of salary on
contribution to the
logarithm of year-end
contributions in
a semiparametric
regression analysis.
The shaded region
represents plus and
minus twice the
estimated (pointwise)
standard error.
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BRI be able to estimate the year-end dollar amount contributed to each plan in
advance so that it can make internal revenue and cost projections.

Apart from building a prediction model for year-end contributions, there are
some other managerial questions that can be addressed using these data. For ex-
ample, BRI has a sales representative who has been specifically trained to deal
exclusively with 401(k) retirement plans. The company would like to know if her
expertise is a factor that influences contributions to such retirement plans.

Figure 1.6 shows the effect ofsalary (average salary of each firm) on the
logarithm of year-end contributions as estimated by a semiparametric regression
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Figure 1.7 Plot of
biomonitoring data.
Open circles show
sampling locations,
and asterisks mark
the single or replicate
values of mercury
measured at each
sampling location.
The large solid circle
marks the location of
the incinerator.

4517

4517.5

4518

4518.5

4519

4519.5

4520

4520.5

4521

4521.5

4522

494

496

498

500

502

504

0

100

200

UTM North

INCINERATOR

UTM East

m
er

cu
ry

analysis. There is a pronounced nonlinearity here, which suggests that better
predictions and managerial decisions can be realized through the use of semi-
parametric regression.

1.4 Biomonitoring of Airborne Mercury

Waste incineration is a major source of environmental mercury. As part of an envi-
ronmental monitoring program in Warren County, New Jersey, pots of sphaghum
moss were placed at 15 sampling locations about a solid waste incinerator and
exposed to ambient conditions between July 9 and July 23, 1991. The moss was
then collected, dried, and assayed for mercury. The resultant data are shown in
Figure 1.7.

The goals of the study include estimating the distribution of mercury about the
incinerator and testing the null hypothesis that the mean mercury concentration
is constant.

Figure 1.8 shows estimated levels of mercury concentration that were obtained
using nonparametric methods described in this book. The plot indicates that mer-
cury concentration peaks north of the incinerator. There are only 15 sampling
locations, with replicate moss pots at 7 of these sites, for a total of 22 observa-
tions. With so few data, only gross features of mercury deposition can be resolved,
but the nonparametric fit provides a pleasing image of these features.

1.5 Term Structure of Interest Rates

Corporations, municipalities, the U.S. Treasury, and other entities raise money by
issuing bonds. The purchase price of the bond is a loan to the issuing entity and
the bond is a contract requiring that entity to pay to the bond holder both principal
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Figure 1.8 Plot of
biomonitoring data
with coloring of
estimated mercury
concentration. There
were 15 sampling
locations and 7 had
replicate samples.
Open circles indicate
sampling locations;
the asterisk marks the
incinerator location.

INCINERATOR
490

495

500

505
4518

4519
4520

4521

0

50

100

150

UTM North

Estimated mercury concentration

UTM East

and interest according to a schedule. At the time of expiration of the bond, which
is called thematurity, the bond holder receives a payment call thepar value.
There are two general classes of bonds, coupon bonds and zero-coupon bonds.
At fixed periods, often every six months, the holder of a coupon bond receives
a coupon payment.Generally, coupon bonds sell at a price near their par value.
The par payment at maturity is a repayment of principal while the coupon pay-
ments are interest. Zero-coupon bonds have no coupon payments and sell below
par. The par payment at maturity represents principal and interest.

Frequently, the initial owner of the bond will sell the bond to another investor.
The current price at which bonds trade depends upon the current interest rates.
For example, suppose a corporate coupon bond with a 5% coupon rate is issued
with the initial price equal to par, so that the coupon payments are 5% of the ini-
tial price. If the prevailing interest rate increases to 6% then the price of the bond
will drop, so that a new purchaser of the bond will in effect receive a 6% rate.

The interest rates on bonds depend upon their maturities, with long-term bonds
frequently (though not always) paying higher rates than short-term bonds. For ex-
ample, on January 26, 2001, the rate on a 1-year Treasury bill was 4.83% whereas
the rate on a 30-year Treasury bond was 6.11%. The term structure of interest
rates is a quantitative description of the dependency of rate upon maturity. The
estimation of term structure is essential for financial analysts working, for exam-
ple, with credit derivatives.

A financial derivative
is a security whose
value depends on
the value of other
underlyingsecurities.
As an example of a
derivative, consider a
call option on a stock.
A call option gives the
owner the right, but
not the obligation, to
purchase a share of
stock at a fixed price
on a given date, called
the expiration date.
The value of the call
option depends on the
price of the underlying
stock and on such

Interest rates not only depend upon the maturity, but for any fixed maturity, the
interest rate on bonds with that maturity will change over time. In this case study,
we are not concerned with such changes. Rather, we will only be concerned with
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how interest rates on a given day depend on maturity. Specifically, in our exam-
ple, we will model bond interest rates on December 31, 1995.

We will work with continuously compounded interest rates. As an illustration,

other variables as
the time left until
expiration. An
example of a interest
rate derivative is a
cap. If an interest rate
exceeds the cap, then
the owner of the cap
is paid the difference
between the interest
rate and the cap.
Clearly, the value of
the cap depends on
the underlying interest
rate. A company
paying interest at a
floating rate might
purchase a cap as
insurance against rate
increases.

we will start with an unrealistic assumption that the interest rate is constant, that
is, not dependent on maturity. If a bond is worthP(t) dollars at timet and is
continuously compounded at a constant rater, thenP(t) satisfies the simple dif-
ferential equation

P ′(t) = rP(t) (1.1)

and so, at maturityT,
P(T ) = P(0)exp(rT ). (1.2)

The rater is called theforward rate. It is the rate agreed upon at present for in-
terest in the future, that is,forward in time.

Interest rates must be inferred from bond prices. Recall that the bond’s value
at maturity,P(T ), is called the par value. Hence, from (1.2) we have

P(0) = parexp(−rT ), (1.3)

wherepar is the par value. Suppose a 1-year, par $100 zero-coupon bond is sell-
ing now for $92. This means we can buy the bond now for $92 and receive $100
exactly one year from now. Recall that zero-coupon means the bond holder re-
ceives no interest payments until maturity. The $8 difference between the present
price and the par value is the only interest payment. Here we haveT = 1, P(1) =
par = 100, P(0) = 92, and, from (1.2),

92= 100 exp(−r)
or

r = log(100/92) = 0.0834.

Thus, the annual continuously compounded interest rate over the next year is
8.34%.

Suppose, in addition, that a 2-year, par $100 zero-coupon bond sells for $85.
We assume that this bond pays the just-determined rate of 8.34% the first year
but a different interest rate the next year. The rate for the second year, call itr2,

solves
83= 100 exp{−(0.0834+ r2)}

or
r2 = log(100/83)− 0.0834= 0.1029.

Table 1.2 gives the prices on December 31, 1995, of five bonds previously is-
sued by the U.S. communications companyAT&T and maturing at some time after
that date. These are the prices at which the bonds were traded – that is, purchased
by one investor from another. Each bond price is expressed as a percentage of
par, the amount AT&T will pay the bond owner at maturity. The maturity is given
in years from December 31, 1995. The bonds make semiannual interest payments
called coupons. The time in years of the next coupon and the coupon payments
are given in the table. The aim is to determine the forward rate of AT&T bonds
from these data.
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Table 1.2 AT&T
bond prices on
December 31, 1995.
Issue, maturity, and
next coupon dates
are in years from
December 31, 1995.

Next
Issue Maturity coupon Coupon Price

−3.9644 5.9781 0.0356 7.1250 109.4580
−1.7726 8.1890 0.2274 6.7500 106.2840
−1.5836 10.3562 0.4164 7.5000 111.4360
−0.8384 11.1041 0.1616 7.7500 115.5090
−0.6384 9.3096 0.3616 7.0000 107.6590

We have been assuming that the forward interest rate is constant over each
year. Clearly, this is an oversimplification. Financial analysts model the forward
interest rate as a continuous function of time,r(t). If P(T ) is the par value of a
zero-coupon bond maturing at timeT and ifP(0) is the current price of the bond,
then(1.1) isreplaced by

P ′(t) = r(t)P(t),
with solution

P(0) = P(T ) exp

(
−
∫ T

0
r(x) dx

)
. (1.4)

The problem is to estimater(t) from bond prices, such as those shown in TableA forward price is a
price negotiated at
the present for the
future delivery of
some commodity. A
forward interest rate
means an interest rate
that is agreed upon
now for a loan in the
future.

1.2. A further complication is that many bonds, including those in the table, have
coupons. A coupon bond can be modeled as a bundle of zero-coupon bonds, one
for each coupon payment and one for the final payment at maturity of the par
value. The bond price is the aggregate price of all of these coupon bonds. Bond
prices such as in Table 1.2 have some random “error” since, for example, they are
really prices at last transaction, not exactly at the current time. Therefore, the es-
timation of the forward rate curve is a statistical problem. Fisher, Nychka, and
Zervos (1994) have developed a very elegant spline method for estimating the for-
ward rate curve. Their method works well for Treasury bond data because there
are enough Treasury bonds to estimate a continuous forward rate.

For corporate bonds, there is often a paucity of data and so the method of Fisher
and colleagues cannot be applied directly. Jarrow, Ruppert, andYu (2001) extend
the model of Fisher et al. by assuming that the forward rate for a corporation such
as AT&T differs from the Treasury forward rate by a constant or, perhaps, by a
low-degree polynomial function of time. The corporate forward rate is greater
than the Treasury rate, since Treasury bonds have no risk of default; the U.S. Trea-
sury can always raise money by taxation. The difference between the two rates
is called therisk premiumor spreadand reflects the extra interest that investors
demand when buying corporate bonds (which may default) rather than risk-free
Treasury bonds. The model of Jarrow and colleagues is semiparametric in that
the Treasury forward rate is modeled as a spline, but the risk premium is mod-
eled parametrically. This case study is typical of semiparametric models in that
parts of the model for which there is much data are modeled nonparametrically
while parts that are not well supported by data are modeled parametrically.

Figure 1.9 shows the prices of U.S. STRIPS (Separate Trading of Registered
Interest and Principal of Securities), a type of zero-coupon Treasury bond. The
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Figure 1.9 U.S.
STRIPS prices as a
percentage of the par
value.
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prices are expressed as a percentage of the par value and are plotted against time
to maturity. Ifr(x) is constant, sayr(x) = r0 for all x, then by (1.4) we have

yi = 100 exp(−r0Ti) (1.5)
and

log(yi) = log(100)− r0Ti. (1.6)

HereP(Ti) is thepar, P(0) is the present price,yi = 100P(0)/P(Ti) is the
“response,” andTi is the maturity for the theith U.S. STRIPS.

The rough exponential shape in Figure 1.9 suggests that model (1.5) is at least
approximately correct. However, in Figure1.10 we see log(yi) plotted against
Ti, and the plot is not quite the straight line that (1.6) suggests. In fact, we fit
a straight line to{Ti, log(yi)}ni=1 and plotted the “residuals,” which are the dif-
ferences between the log(yi) and the fitted line. This plot, shown as Figure 1.11,
shows an obvious deviation from the random cloud that we would expect if the
model (1.5) fit the data, thus indicating the need for a nonparametric model. The
fitting of straight line models and residual analysis will be discussed in Chapter 2.

1.6 Air Pollution and Mortality in Milan: The Harvesting Effect

In the last decade, a good deal of literature has been published concerning the
short-term effect of air pollution on health. Daily mortality counts and hospi-
tal admissions have been associated with daily air pollution levels, correcting
for several time-dependent confounders. From the public health point of view,
the significance of air pollution’s short-term effects corresponds to an increase in
mortality or morbidity among individuals who would otherwise die much later,
not among those who could have died within a few days.
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Figure 1.10
Logarithms of U.S.
STRIPS prices as a
percentage of the par
value.
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Figure 1.11
Residuals from a
straight line fit to the
logarithms of the U.S.
STRIPS prices as a
percentage of the par
value.
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Figure1.12 is aschematic representation of the dynamics that arise when air
pollution has an impact on mortality. Therisk pool consists of sick and elderly
people. Transitions between this state and the general population are affected by
air pollution levels.

Consider the following lagged regression model of air pollution and generic
mortality:

log{E(mortalityt )} = α + β0pollution t + · · · + βqpollution t−q + εt ,



1.6 Air Pollution and Mortality in Milan: The Harvesting Effect 13

Figure 1.12
Schematic
representation
of the dynamics
that arise when air
pollution has an
impact on mortality.
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Figure 1.13
Lag structure
corresponding to the
harvesting effect.
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wheremortalityt andpollution t are (respectively) the mortality count and
pollution level for dayt. The lag structure in Figure1.13describes the so-called
harvesting effect.The horizontal axis is the lag number and the vertical axis shows
the coefficientsβ`. Eachβ` has this interpretation: net effect of pollution level`
days ago on mortality.

In the figure,A is the sum of the positive coefficients for low lags and repre-
sents the fact that pollution levels in the past few days or weeks have a positive
effect on mortality. However, the negative coefficients inB mean that pollution
levels a longer period ago have a negative effect. This is due to “depletion of
the risk pool,” normally made up of elderly and sick people whose deaths have
been hastened a few days or weeks by episodes of high pollution; this is known
as “harvesting.” HereA overestimates the public health significance of pollution,
since it is reallyA+ B (whereB is negative) that represents deaths induced by a
noticeable amount of time.

Daily data over 10 years are available on mortality, air pollution, and several
meteorological variables for the city of Milan, Italy. It is of interest to use these to



14 Introduction

Figure 1.14
Estimates of the
coefficients of the
lags of sulphur
dioxide on mortality
in Milan, Italy. The
shaded points are
plus and minus 2
times the estimated
standard error of each
coefficient estimate.
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quantify the public health significance of air pollution, incorporating the harvest-
ing effect. By constraining the lag coefficients to be on a smooth (but otherwise
flexible) curve, we obtained Figure1.14.This suggests some evidence of harvest-
ing. The construction of this result required some nonstandard semiparametric
regression techniques that allowed for the lag coefficients to lie on a smooth curve
and also be influenced by data on daily weather conditions.

Chapter18 provides much fuller analyses and solutions for a selection of the prob-
lems presented in this chapter. Between now and then we will need to describe
techniques for performing semiparametric regression analysis. The next chapter
signals the start of this journey.


