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Creation, Compression, Restoration, Recognition

Compression, restoration and recognition are three of the key components of digital
imaging. The mathematics needed to understand and carry out all these components is
here explained in a textbook that is at once rigorous and practical with many worked
examples, exercises with solutions, pseudocode, and sample calculations on images. The
introduction lists fast tracks to special topics such as Principal Component Analysis,
and ways into and through the book, which abounds with illustrations. The first part
describes plane geometry and pattern-generating symmetries, along with some text on
3D rotation and reflection matrices. Subsequent chapters cover vectors, matrices and
probability. These are applied to simulation, Bayesian methods, Shannon’s Information
Theory, compression, filtering and tomography. The book will be suited for course use
or for self-study. It will appeal to all those working in biomedical imaging and diagnosis,
computer graphics, machine vision, remote sensing, image processing, and information
theory and its applications.
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Preface

This text is a successor to the 1992 Mathematics for Computer Graphics. It retains the
original Part I on plane geometry and pattern-generating symmetries, along with much
on 3D rotation and reflection matrices. On the other hand, the completely new pages
exceed in number the total pages of the older book.

In more detail, topology becomes a reference and is replaced by probability, leading
to simulation, priors and Bayesian methods, and the Shannon Information Theory. Also,
notably, the Fourier Transform appears in various incarnations, along with Artificial
Neural Networks. As the book’s title implies, all this is applied to digital images, their
processing, compresssion, restoration and recognition.

Wavelets are used too, in compression (as are fractals), and in conjuction with B-splines
and subdivision to achieve multiresolution and curve editing at varying scales. We con-
clude with the Fourier approach to tomography, the medically important reconstruction
of an image from lower-dimensional projections.

As before, a high priority is given to examples and illustrations, and there are exercises,
which the reader can use if desired, at strategic points in the text; these sometimes
form part of the exercises placed at the end of each chapter. Exercises marked with a
tick are partly, or more likely fully, solved on the website. Especially after Chapter 6,
solutions are the rule, except for implementation exercises. In the latter regard there are
a considerable number of pseudocode versions throughout the text, for example ALGO
11.9 of Chapter 11, simulating the d-dimensional Gaussian distribution, or ALGO 16.1,
wavelet compression with limited percentage error.

A further priority is to help the reader know, as the story unfolds, where to turn back
for justification of present assumptions, and to point judiciously forward for coming
applications. For example, the mentioned Gaussian of Chapter 11 needs the theory of
positive definite matrices in Chapter 8. In the introduction we suggest some easy ways
in, including journeys by picture alone, or by light reading.

Much of the material of this book began as a graduate course in the summer of 1988,
for Ph.D. students in computer graphics at the Ohio State University. My thanks are due
to Rick Parent for encouraging the idea of such a course. A further part of the book was
developed from a course for final year mathematics students at the University of Glasgow.

xi
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Introduction

Beauty is in the eye of the beholder ...

Why the quote? Here beauty is a decoded message, a character recognised, a discovered
medical condition, a sought-for face. It depends on the desire of the beholder. Given
a computer image, beauty is to learn from it or convert it, perhaps to a more accurate
original. But we consider creation too.

It is expected that, rather than work through the whole book, readers may wish to
browse or to look up particular topics. To this end we give a fairly extended introduction,
list of symbols and index. The book is in six interconnected parts (the connections are
outlined at the end of the Introduction):

I The plane Chapters 1–6;
II Matrix structures Chapters 7–8;
III Here’s to probability Chapters 9–11;
IV Information, error and belief Chapters 12–13;
V Transforming the image Chapters 14–16;
VI See, edit, reconstruct Chapters 17–18.

Easy ways in One aid to taking in information is first to go through following a sub-
structure and let the rest take care of itself (a surprising amount of the rest gets tacked
on). To facilitate this, each description of a part is followed by a quick trip through that
part, which the reader may care to follow. If it is true that one picture is worth a thousand
words then an easy but fruitful way into this book is to browse through selected pictures,
and overleaf is a table of possibilities. One might take every second or third entry, for
example.

Chapters 1–6 (Part I) The mathematics is geared towards producing patterns automati-
cally by computer, allocating some design decisions to a user. We begin with isometries –
those transformations of the plane which preserve distance and hence shape, but which
may switch left handed objects into right handed ones (such isometries are called
indirect). In this part of the book we work geometrically, without recourse to matrices.
In Chapter 1 we show that isometries fall into two classes: the direct ones are rotations

xiii
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or translation, and the indirect ones reflections or glides. In Chapter 2 we derive the rules
for combining isometries, and introduce groups, and the dihedral group in particular. In
a short Chapter 3 we apply the theory so far to classifying all 1-dimensional or ‘braid’
patterns into seven types (Table 3.1).

From Chapter 4 especially we consider symmetries or ‘symmetry operations’ on
a plane pattern. That is, those isometries which send a pattern onto itself, each part
going to another with the same size and shape (see Figure 1.3 ff). A plane pattern is
one having translation symmetries in two non-parallel directions. Thus examples are
wallpaper patterns, floor tilings, carpets, patterned textiles, and the Escher interlocking
patterns such as Figure 1.2. We prove the crystallographic restriction, that rotational
symmetries of a plane pattern must be multiples of a 1/2, 1/3, 1/4 or 1/6 turn (1/5 is
not allowed). We show that plane patterns are made up of parallelogram shaped cells,
falling into five types (Figure 4.14).

In Chapter 5 we deduce the existence of 17 pattern types, each with its own set of
interacting symmetry operations. In Section 5.8 we include a flow chart for deciding
into which type any given pattern fits, plus a fund of test examples. In Chapter 6 we
draw some threads together by proving that the 17 proposed categories really are distinct
according to a rigorous definition of ‘equivalent’ patterns (Section 6.1), and that every
pattern must fall into one of the categories provided it is ‘discrete’ (there is a lower limit
on how far any of its symmetries can move the pattern).

By this stage we use increasingly the idea that, because the composition of two sym-
metries is a third, the set of all symmetries of a pattern form a group (the definition
is recalled in Section 2.5). In Section 6.3 we consider various kinds of regularity upon
which a pattern may be based, via techniques of Coxeter graphs and Wythoff’s con-
struction (they apply in higher dimensions to give polyhedra). Finally, in Section 6.4 we
concentrate the theory towards building an algorithm to construct (e.g. by computer) a
pattern of any type from a modest user input, based on a smallest replicating unit called
a fundamental region.
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Introduction xv

Chapters 1–6: a quick trip Read the introduction to Chapter 1 then note Theorem 1.18
on what isometries of the plane turn out to be. Note from Theorem 2.1 how they can all be
expressed in terms of reflections, and the application of this in Example 2.6 to composing
rotations about distinct points. Look through Table 2.2 for anything that surprises you.
Theorem 2.12 is vital information and this will become apparent later. Do the exercise
before Figure 2.19. Omit Chapter 3 for now.

Read the first four pages of Chapter 4, then pause for the crystallographic restriction
(Theorem 4.15). Proceed to Figure 4.14, genesis of the five net types, note Examples
4.20, and try Exercise 4.6 at the end of the chapter yourself. Get the main message of
Chapter 5 by using the scheme of Section 5.8 to identify pattern types in Exercises 5
at the end of the chapter (examples with answers are given in Section 5.7). Finish in
Chapter 6 by looking through Section 6.4 on ‘Creating plane patterns’ and recreate the
one in Exercise 6.13 (end of the chapter) by finding one fundamental region.

Chapters 7–8 (Part II) After reviewing vectors and geometry in 3-space we introduce
n-space and its vector subspaces, with the idea of independence and bases. Now come
matrices, representing linear equations and transformations such as rotation. Matrix
partition into blocks is a powerful tool for calculation in later chapters (8, 10, 15–17).
Determinants test row/equation independence and enable n-dimensional integration for
probability (Chapter 10).

In Chapter 8 we review complex numbers and eigenvalues/vectors, hence classify
distance-preserving transformations (isometries) of 3-space, and show how to determine
from the matrix of a rotation its axis and angle (Theorem 8.10), and to obtain a normal
vector from a reflection matrix (Theorem 8.12). We note that the matrix M of an isometry
in any dimension is orthogonal, that is MMT = I , or equivalently the rows (or columns)
are mutually orthogonal unit vectors. We investigate the rank of a matrix – its number
of independent rows, or of independent equations represented. Also, importantly, the
technique of elementary row operations, whereby a matrix is reduced to a special form,
or yields its inverse if one exists.

Next comes the theory of quadratic forms
∑

ai j xi x j defined by a matrix A = [ai j ],
tying in with eigenvalues and undergirding the later multivariate normal/Gaussian dis-
tribution. Properties we derive for matrix norms lead to the Singular Value Decomposi-
tion: a general m × n matrix is reducible by orthogonal matrices to a general diagonal
form, yielding approximation properties (Theorem 8.53). We include the Moore–Penrose
pseudoinverse A+ such that AX = b has best solution X = A+b if A−1 does not exist.

Chapters 7–8: a quick trip Go to Definition 7.1 for the meaning of orthonormal vectors
and see how they define an orthogonal matrix in Section 7.2.4. Follow the determinant
evaluation in Examples 7.29 then ‘Russian’ block matrix multiplication in Examples
7.38. For vectors in coordinate geometry, see Example 7.51.

In Section 7.4.1 check that the matrices of rotation and reflection are orthogonal.
Following this theme, see how to get the geometry from the matrix in 3D, Example 8.14.
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xvi Introduction

Next see how the matrix row operations introduced in Theorem 8.17 are used for solving
equations (Example 8.22) and for inverting a matrix (Example 8.27).

Now look at quadratic forms, their meaning in (8.14), the positive definite case in Table
8.1, and applying the minor test in Example 8.38. Finally, look up the pseudoinverse of
Remarks 8.57 for least deviant solutions, and use it for Exercise 24 (end of chapter).

Chapters 9–11 (Part III) We review the basics of probability, defining an event E to
be a subset of the sample space S of outcomes, and using axioms due to Kolmogorov
for probability P(E). After conditional probability, independence and Bayes’ Theorem
we introduce random variables X : S → RX , meaning that X allocates to each outcome
s some value x in its range RX (e.g. score x in archery depends on hit position s). An
event B is now a subset of the range and X has a pdf (probability distribution function),
say f (x), so that the probability of B is given by the integral

P(B) =
∫

B

f (x) dx,

or a sum if the range consists of discrete values rather than interval(s). From the idea of
average, we define the expected value µ = E(X ) = ∫

x f (x) dx and variance V (X ) =
E(X − µ)2. We derive properties and applications of distributions entitled binomial,
Poisson and others, especially the ubiquitous normal/Gaussian (see Tables 9.9 and 9.10
of Section 9.4.4).

In Chapter 10 we move to random vectors X = (X1, . . . , Xn), having in mind message
symbols of Part IV, and pixel values. A joint pdf f (x1, . . . , xn) gives probability as an
n-dimensional integral, for example

P(X < Y ) =
∫

B

f (x, y) dx dy, where B = {(x, y) : x < y}.

We investigate the pdf of a function of a random vector. In particular X + Y , whose pdf
is the convolution product f ∗g of the pdfs f of X and g of Y , given by

( f ∗g)(z) =
∫

R

f (t)g(z − t) dt.

This gives for example the pdf of a sum of squares of Gaussians via convolution properties
of the gamma distribution. Now we use moments E(Xr

i ) to generate new pdfs from old, to
relate known ones, and to prove the Central Limit Theorem that X1 + · · · + Xn (whatever
the pdfs of individual Xi ) approaches a Gaussian as n increases, a pointer to the important
ubiquity of this distribution.

We proceed to the correlation Cov(X, Y ) between random variables X, Y , then the
covariance matrix Cov(X) = [Cov(Xi , X j )] of a random vector X = (Xi ), which yields
a pdf for X if X is multivariate normal, i.e. if the Xi are normal but not necessar-
ily independent (Theorem 10.61). Chapter 10 concludes with Principal Component
Analysis, or PCA, in which we reduce the dimension of a data set, by transforming

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521780292 - Mathematics of Digital Images: Creation, Compression, Restoration, Recognition
S. G. Hoggar
Frontmatter
More information

http://www.cambridge.org/0521780292
http://www.cambridge.org
http://www.cambridge.org


Introduction xvii

to new uncorrelated coordinates ordered by decreasing variance, and dropping as many
of the last few variables as have total variance negligible. We exemplify by compressing
face image data.

Given a sample, i.e. a sequence of measurements X1, . . . , Xn of a random variable X ,
we seek a statistic f (X1, . . . , Xn) to test the hypothesis that X has a certain distribution
or, assuming it has, to estimate any parameters (Section 11.1). Next comes a short intro-
duction to the Bayesian approach to squeezing useful information from data by means
of an initially vague prior belief, firmed up with successive observations. An important
special case is classification: is it a tumour, a tank, a certain character, . . . ?

For testing purposes we need simulation, producing a sequence of variates whose
frequencies mimic a given distribution (Section 11.3). We see how essentially any distri-
bution may be achieved starting from the usual computer-generated uniform distribution
on an interval [0, 1]. Example: as suggested by the Central Limit Theorem, the sum of
uniform variables U1, . . . , U12 on [0, 1] is normal to a good approximation.

We introduce Monte Carlo methods, in which a sequence of variates from a suitably
chosen distribution yields an approximate n-dimensional integral (typically probability).
The method is improved by generating the variates as a Markov chain X1, X2, . . . , where
Xi depends on the preceding variable but on none earlier. This is called Markov Chain
Monte Carlo, or MCMC. It involves finding joint pdfs from a list of conditional ones,
for which a powerful tool is a Bayesian graph, or net.

We proceed to Markov Random Fields, a generalisation of a Markov chain useful for
conditioning colour values at a pixel only on values at nearest neighbours. Simulated
annealing fits here, in which we change a parameter (‘heat’) following a schedule de-
signed to avoid local minima of an ‘energy function’ we must minimise. Based on this,
we perform Bayesian Image Restoration (Example 11.105).

Chapters 9–11: a quick trip Note the idea of sample space by reading Chapter 9 up to
Example 9.2(i), then random variable in Definition 9.32 and Example 9.35. Take in the
binomial case in Section 9.4.1 up to Example 9.63(ii). Now look up the cdf at (9.29) and
Figure 9.11.

Review expected value at Definition 9.50 and the prudent gambler, then variance at
Section 9.3.6 up to (9.39) and the gambler’s return. Now it’s time for normal/Gaussian
random variables. Read Section 9.4.3 up to Figure 9.20, then follow half each of Examples
9.75 and 9.76. Glance at Example 9.77.

Check out the idea of a joint pdf f (x, y) in Figure 10.1, Equation (10.4) and Example
10.2. Then read up the pdf of X + Y as a convolution product in Section 10.2.2 up
to Example 10.18. For the widespread appearance of the normal distribution see the
introduction to Section 10.3.3, then the Central Limit Theorem 10.45, exemplified in
Figure 10.7. See how the covariance matrix, (10.44), (10.47), gives the n-dimensional
normal distribution in Theorem 10.61.

Read the introduction to Chapter 11, then Example 11.6, for a quick view of the
hypothesis testing idea. Now the Bayesian approach, Section 11.2.1. Note the meaning
of ‘prior’ and how it’s made more accurate by increasing data, in Figure 11.11.
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xviii Introduction

The Central Limit Theorem gives a quick way to simulate the Gaussian/normal: read
from Figure 11.21 to 11.22. Then, note how the Choleski matrix decomposition from
Chapter 8 enables an easy simulation of the n-dimensional Gaussian.

On to Markov chains, the beginning of Section 11.4 up to Definition 11.52, and
their generalisation to Markov random fields, modelling an image, Examples 11.79 and
preceding text. Take in Bayesian Image Restoration, Section 11.4.6 above Table 11.13,
then straight on to Figure 11.48 at the end.

Chapters 12–13 (Part IV) We present Shannon’s solution to the problem of mea-
suring information. In more detail, how can we usefully quantify the information in a
message understood as a sequence of symbols X (random variable) from an alphabet
A = {s1, . . . , sn}, having a pdf {p1, . . . , pn}. Shannon argued that the mean information
per symbol of a message should be defined as the entropy

H (X ) = H (p1, . . . , pn) =
∑

−pi log pi

for some fixed basis of logarithms, usually taken as 2 so that entropy is measured in bits
per symbol. An early vindication is that, if each si is encoded as a binary word ci , the
mean bits per symbol in any message cannot be less than H (Theorem 12.8). Is there
an encoding scheme that realises H? Using a graphical method Huffman produced the
most economical coding that was prefix-free (no codeword a continuation of another).
This comes close to H, but perhaps the nearest to a perfect solution is an arithmetic code,
in which the bits per symbol tend to H as message length increases (Theorem 12.35).
The idea here extends the method of converting a string of symbols from {0, 1, . . . , 9}
to a number between 0 and 1.

In the widely used LZW scheme by Lempel, Ziv and Welch, subsequences of the
text are replaced by pointers to them in a dictionary. An ingenious method recreates
the dictionary from scratch as decoding proceeds. LZW is used in GIF image encoding,
where each pixel value is representable as a byte, hence a symbol.

A non-entropy approach to information was pioneered by Kolmogorov: the informa-
tion in a structure should be measured as its Minimum Description Length, or MDL,
this being more intrinsic than a probabilistic approach. We discuss examples in which
the MDL principle is used to build prior knowledge into the description language and to
determine the best model for a situation.

Returning to Shannon entropy, we consider protection of information during its trans-
mission, by encoding symbols in a redundant way. Suppose k message symbols average
n codeword symbols X , which are received as codeword symbols Y. The rate of trans-
mission is then R = k/n. We prove Shannon’s famous Channel Coding Theorem, which
says that the transition probabilities {p(y|x)} of the channel determine a quantity called
the channel capacity C, and that, for any rate R < C and probability ε > 0, there is a
code with rate R and

P(symbol error Y �= X ) < ε.
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Introduction xix

The codes exist, but how hard are they to describe, and are they usable? Until recent years
the search was for codes with plenty of structure, so that convenient algorithms could be
produced for encoding and decoding. The codewords usually had alphabet {0, 1}, fixed
length, and formed a vector space at the least. Good examples are the Reed–Solomon
codes of Section 13.2.4 used for the first CD players, which in consequence could be
surprisingly much abused before sound quality was affected.

A new breakthrough in closeness to the Shannon capacity came with the turbocodes
of Berrou et al. (Section 13.3.4), probabilistic unlike earlier codes, but with effective
encoding and decoding. They depend on belief propagation in Bayesian nets (Section
13.3.1), where Belief(x) = p(x |e) quantifies our belief about internal node variables x
in the light of evidence e, the end node variables. Propagation refers to the algorithmic
updating of Belief(x) on receipt of new information. We finish with a review of belief
propagation in computer vision.

Chapters 12–13: a quick trip Look up Shannon’s entropy at (12.7) giving least bits per
symbol, Theorem 12.8. Below this, read ‘codetrees’, then Huffman’s optimal codes in
Construction 12.12 and Example 12.13. Proceed to LZW compression in Section 12.7
up to Example 12.38, then Table 12.7 and Figure 12.20.

For Kolmogorov’s alternative to entropy and why, read Section 12.8.1 up to (12.34)
and their ultimate convergence, Theorem 12.54. For applications see Section 12.8.3 up
to ‘some MDL features’ and Figure 12.26 to ‘Further examples’.

Get the idea of a channel from Section 13.1 up to mutual entropy, (13.3), then
Figure 13.2 up to ‘Exercise’. Look up capacity at (13.23) (don’t worry about C(β)
for now). Next, channel coding in Section 13.1.6 to Example 13.33, the Hamming code,
and we are ready for the Channel Coding Theorem at Corollary 13.36.

Read the discussion that starts Section 13.2.5. Get some idea of convolution codes at
Section 13.3.2 to Figure 13.33, and turbocodes at Figures 13.39 and 13.40. For the belief
network basis of their probabilistic handling, look back at Section 13.3.1 to Figure 13.24,
then the Markov chain case in Figure 13.25 and above. More generally Figure 13.26.
Finally, read the postscript on belief networks in Computer Vision.

Chapters 14–16 (Part V) With suitable transforms we can carry out a huge variety
of useful processes on a computer image, for example edge-detection, noise removal,
compression, reconstruction, and supplying features for a Bayesian classifier.

Our story begins with the Fourier Transform, which converts a function f (t) to a new
function F(s), and its relative the N -point Discrete Fourier Transform or DFT, in which
f and F are N-vectors:

F(s) =
∫ ∞

−∞
f (t)e−2π ist dt, and Fk =

∑N−1

n=0
e−2π ikn/N fn.

We provide the background for calculus on complex numbers. Significantly, the relations
between numbers of the form e−2π ik/N result in various forms of Fast Fourier Transform,
in which the number of arithmetic operations for the DFT is reduced from order N 2 to
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xx Introduction

order N log2N, an important saving in practice. We often need a convolution f ∗g (see
Part III), and the Fourier Transform sends

f ∗g → F ◦ G (Convolution Theorem),

the easily computed elementwise product, whose value at x is F(x)G(x); similarly for the
DFT. We discuss the DFT as approximation to the continuous version, and the significance
of frequencies arising from the implied sines and cosines. In general a 1D transform yields
an n-dimensional one by transforming with respect to one variable/dimension at a time.
If the transform is, like the DFT, given by a matrix M, sending vector f → M f , then the
2D version acts on a matrix array g by

g → MgMT (= G),

which means we transform each column of g then each row of the result, or vice versa, the
order being unimportant by associativity of matrix products. Notice g = M−1G(MT)−1

inverts the transform. The DFT has matrix M = [w kn], where w = e−2π i/N , from which
there follow important connections with rotation (Figure 15.4) and with statistical prop-
erties of an image. The Convolution Theorem extends naturally to higher dimensions.

We investigate highpass filters on images, convolution operations which have the
effect of reducing the size of Fourier coefficients Fjk for low frequencies j, k, and so
preserving details such as edges but not shading (lowpass filters do the opposite). We
compare edge-detection by the Sobel, Laplacian, and Marr–Hildreth filters. We introduce
the technique of deconvolution to remove the effect of image noise such as blur, whether
by motion, lens inadequacy or atmosphere, given the reasonable assumption that this
effect may be expressed as convolution of the original image g by a small array h. Thus
we consider

blurred image = g∗h → G ◦ H.

We give ways to find H, hence G by division, then g by inversion of the transform (see
Section 15.3). For the case when noise other than blur is present too, we use probability
considerations to derive the Wiener filter. Finally in Chapter 15 we investigate compres-
sion by the Burt–Adelson pyramid approach, and by the Discrete Cosine Transform, or
DCT. We see why the DCT is often a good approximation to the statistically based K–L
Transform.

In Chapter 16 we first indicate the many applications of fractal dimension as a param-
eter, from the classical coastline measurement problem through astronomy to medicine,
music, science and engineering. Then we see how the ‘fractal nature of Nature’ lends
itself to fractal compression.

Generally the term wavelets applies to a collection of functions �
j

i (x) obtained from
a mother wavelet �(x) by repeated translation, and scaling in the ratio 1/2. Thus

�
j

i (x) = �(2x j x − i), 0 ≤ i < 2 j .

We start with Haar wavelets, modelled on the split box �(x) equal to 1 on [0, 1/2), to −1
on [1/2, 1] and zero elsewhere. With respect to the inner product 〈 f, g〉 =

∫
f (x)g(x) dx
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Introduction xxi

for functions on [0, 1] the wavelets are mutually orthogonal. For fixed resolution J, the
wavelet transform is

f → its components with respect to φ0(x) and �i
j (x), 0 ≤ j ≤ J, 0 ≤ i < 2 j ,

where φ0(x) is the box function with value 1 on [0, 1]. Converted to 2D form in the usual
way, this gives multiresolution and compression for computer images. We pass from
resolution level j to j + 1 by adding the appropriate extra components. For performing
the same without necessarily having orthogonality, we show how to construct the filter
bank, comprising matrices which convert between components at different resolutions.
At this stage, though, we introduce the orthogonal wavelets of Daubechies of which Haar
is a special case. These are applied to multiresolution of a face, then we note the use for
fingerprint compression.

Lastly in Part V, we see how the Gabor Transform and the edge-detectors of Canny
and of Marr and Hildreth may be expressed as wavelets, and outline the results of Lu,
Healy and Weaver in applying a wavelet transform to enhance constrast more effectively
than other methods, for X-ray and NMR images.

Chapters 14–16: a quick trip Look at Equations (14.1) to (14.4) for the DFT, or Dis-
crete Fourier Transform. Include Notation 14.3 for complex number foundations, then
Figure 14.3 for the important frequency viewpoint, and Figure 14.6 for the related filtering
schema.

For an introduction to convolution see Example 14.11, then follow the polynomial
proof of Theorem 14.12. Read Remarks 14.14 about the Fast Transform (more details
in Section 14.1.4). Read up the continuous Fourier Transform in Section 14.2.1 up to
Figure 14.13, noting Theorem 14.22. For the continuous–discrete connection, see points
1, 2, 3 at the end of Chapter 14, referring back when more is required.

In Chapter 15, note the easy conversion of the DFT and its continuous counterpart to
two dimensions, in (15.6) and (15.10). Observe the effect of having periodicity in the
image to be transformed, Figure 15.3, and of rotation, Figure 15.4.

Notice the case of 2D convolution in Example 15.14 and the convolution Theorems
15.16 and 15.17. Look through the high-versus lowpass material in Sections 15.2.2 and
15.2.3, noting Figures 15.15, 15.18, and 15.20. Compare edge-detection filters with each
other in Figure 15.23. Read up recovery from motion blur in Section 15.3.1, omitting
proofs.

For the pyramid compression of Burt and Adelson read Section 15.4 up to Figure
15.37 and look at Figures 15.39 and 15.40. For the DCT (Discrete Cosine Transform)
read Section 15.4.2 up to Theorem 15.49 (statement only). Note the standard conversion
to 2D in Table 15.8, then see Figures 15.42 and 15.43. Now read the short Section 15.4.3
on JPEG. Note for future reference that the n-dimensional Fourier Transform is covered,
with proofs, in Section 15.5.2.

For fractal dimension read Sections 16.1.1 and 16.1.2, noting at a minimum the key
formula (16.9) and graph below. For fractal compression take in Section 16.1.4 up to
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xxii Introduction

(16.19), then Example 16.6. A quick introduction to wavelets is given at the start of
Section 16.2, then Figure 16.23. Moving to two dimensions, see Figure 16.25 and its
introduction, and for image compression, Figure 16.27.

A pointer to filter banks for the discrete Wavelet Transform is given by Figure 16.28
with its introduction, and (16.41). Now check out compression by Daubechies wavelets,
Example 16.24. Take a look at wavelets for fingerprints, Section 16.3.4. Considering
wavelet relatives, look at Canny edge-detection in Section 16.4.3, then scan quickly
through Section 16.4.4, slowing down at the medical application in Example 16.28.

Chapters 17–18 (Part VI) B-splines are famous for their curve design properties, which
we explore, along with the connection to convolution, Fourier Transform, and wavelets.

The ith basis function Ni,m(t) for a B-spline of order m, degree m-1, may be obtained
as a translated convolution product b∗b∗ · · ·∗b of m unit boxes b(t). Consequently, the
function changes to a different polynomial at unit intervals of t , though smoothly, then
becomes zero. Convolution supplies a polynomial-free definition, its simple Fourier
Transform verifying the usually used Cox–de Boor defining relations. Unlike a Bézier
spline, which for a large control polygon P0 . . . Pn requires many spliced component
curves, the B-spline is simply

Bm(t) =
∑n

i=0
Ni,m(t)Pi .

We elucidate useful features of Bm(t), then design a car profile, standardising on cubic
splines, m = 4. Next we obtain B-splines by recursive subdivision starting from the
control polygon. That is, by repetitions of

subdivision = split + average,

where split inserts midpoints of each edge and average replaces each point by a linear
combination of neighbours. We derive the coefficients as binomials, six subdivisions
usually sufficing for accuracy. We recover basis functions, now denoted by φ

j
1 (x), starting

from hat functions. In the previous wavelet notation we may write

� j−1 = � j P j (basis), where f j = P j f j−1,

the latter expressing level j − 1 vectors in terms of level j via a matrix P j . Now we aim
for a filter bank so as to edit cubic-spline-based images. It is (almost) true that for our
splines (a) for fixed j the basis functions are translates, (b) those at level j + 1 are scaled
from level j . As before, we take V j = span � j and choose wavelet space W j−1 ⊆ V j

to consist of the functions in V j orthogonal to all those in V j−1. It follows that any f in
V j equals g + h for unique g in V j−1 and h in W j−1, this fact being expressed by

V j−1 ⊕ W j−1 = V j .

A basis of W j−1 (the wavelets) consists of linear combinations from V j , say the vector of
functions � j−1 = � j Q j for some matrix Q j . Orthogonality leaves many possible Q j ,
and we may choose it to be antipodal (half-turn symmetry), so that one half determines
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Introduction xxiii

the rest. This yields matrices P, Q, A, B for a filter bank, with which we perform editing
at different scales based on (for example) a library of B-spline curves for components of
a human face.

In the first appendix we see how to determine simple formulae for filter bank matrices,
using connections with polynomials. The second appendix introduces surfaces wavelets
as a natural generalisation from curves, and we indicate how a filter bank may be obtained
once more.

(Chapter 18) An artificial neural network, or just net, may be thought of firstly in
pattern recognition terms, converting an input vector of pixel values to a character they
represent. More generally, a permissible input vector is mapped to the correct output by
a process in some way analogous to the neural operation of the brain (Figure 18.1). We
work our way up from Rosenblatt’s Perceptron, with its rigorously proven limitations,
to multilayer nets which in principle can mimic any input–output function. The idea is
that a net will generalise from suitable input–output examples by setting free parameters
called weights. We derive the Backpropagation Algorithm for this, from simple gradient
principles. Examples are included from medical diagnosis and from remote sensing.

Now we consider nets that are mainly self-organising, in that they construct their own
categories of classification. We include the topologically based Kohonen method (and
his Learning Vector Quantisation). Related nets give an alternative view of Principal
Component Analysis. At this point Shannon’s extension of entropy to the continuous
case opens up the criterion of Linsker that neural network weights should be chosen
to maximise mutual information between input and output. We include a 3D image
processing example due to Becker and Hinton. Then the further Shannon theory of rate
distortion is applied to vector quantisation and the LBG quantiser.

Now enters the Hough Transform and its widening possibilities for finding arbitray
shapes in an image. We end with the related idea of tomography, rebuilding an image
from projections. This proves a fascinating application of the Fourier Transform in two
and even in three dimensions, for which the way was prepared in Chapter 15.

Chapters 17–18: a quick trip Go straight to the convolution definition, (17.7), and result
in Figure 17.7, of the φk whose translates, (17.15) and Figure 17.10, are the basis functions
for B-splines. (Note the Fourier calculation below Table 17.1.) See the B-spline Definition
17.13, Theorem 17.14, Figure 17.12, and car body Example 17.18. Observe B-splines
generated by recursive subdivision at Examples 17.33 and 17.34.

We arrive at filter banks and curve editing by Figure 17.32 of Section 17.3.3. Sam-
ple results at Figure 17.37 and Example 17.46. For an idea of surface wavelets, see
Figures 17.51 and 17.52 of the second appendix.

Moving to artificial neural networks, read Perceptron in Section 18.1.2 up to
Figure 18.5, note the training ALGO 18.1, then go to Figure 18.15 and Remarks follow-
ing. Proceed to the multilayer net schema, Figure 18.17, read ‘Discovering Backprop-
agation’ as far as desired, then on to Example 18.11. For more, see the remote sensing
Example 18.16.
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xxiv Introduction

Now for self-organising nets. Read the introduction to Section 18.2, then PCA by
Oja’s method at (18.28) with discussion following, then the k-means method at Equation
(18.30) and Remarks 18.20. Consider Kohonen’s topologically based nets via Example
18.21 (note the use of ‘neighbourhoods’) and remarks following.

Revisit information theory with differential entropy in Table 18.3, and the Gaussian
case in Theorem 18.29. Now observe the application of mutual entropy to nets, in Example
18.34 down to Equation (18.47). Pick up rate distortion from (18.60) and the ‘compression
interpretation’ below, then look at Theorem 18.48 (without proof) and Example 18.49.
With notation from (18.67) and (18.68), note Theorem 18.50. Read Section 18.3.6 to find
steps A, B then see the LBG quantization in Example 18.59 and the discussion following.

The last topic is tomography. Read through Section 18.4.2 then note the key projection
property, (18.79), and the paragraph below it. Observe Figure 18.63, representing the
interpolation step, then see the final result in Examples 18.65 and 66. Finally, note
‘higher dimensions’.

Which chapters depend on which

1–6 Each chapter depends on the previous ones.
7 Depends generally on Chapter 1.
8 Depends strongly on Chapter 7.
9 Little reliance on previous chapters. Uses some calculus.
10 Depends strongly on Chapters 8 and 9.
11 Builds on Chapter 10.
12 Basic probability from Chapter 9; last section uses random vectors from

Chapter 10.
13 Section 13.1 develops entropy from Section 12.1, whilst Section 13.2

uses vector space bases from Section 7.1.5. Belief networks in Section
13.3 recapitulates Section 11.4.4 first.

14 Uses matrices from Section 7.2, complex vectors and matrices from
Section 8.1.1, convolution from Section 10.2.2; evaluating the FFT uses
big O notation of Section 10.3.3.

15 Builds on Chapter 14. The Rotation Theorem of Section 15.1.3 uses the
Jacobian from Section 10.2.1, rotation from Section 7.4.1. Filter
symmetry in Section 15.2.3 uses Example 8.21(iii). The Wiener filter,
Section 15.3.4, needs functions of a random vector, Section 10.2, and
covariance, Section 10.4.2. Compression, Section 15.4, uses entropy
from Chapter 12.

16 Fractals, Section 16.1, uses the regression line from Section 11.1.4.
Sections 16.2 and 16.3 use vector spaces from Section 7.1.5, with inner
product as in (7.8), and the block matrices of Section 7.2.5. Also the
general construction of 2D transforms in Section 15.1.1, and the DCT in
Section 15.4.2. Section 16.4 makes wide use of the Fourier Transform
from Chapters 14 and 15.
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Introduction xxv

17 Depending strongly on Section 16.2 and Section 16.3, this chapter also
requires knowledge of the 1D Fourier Transform of Chapter 14, whilst
Section 17.3.2 uses dependent vectors from Section 7.1.5 and symmetry
from Example 8.21(iii).

18 The first three sections need probabililty, usually not beyond Chapter 10
except for Bayes at Section 11.2. Section 18.3 builds on the mutual
entropy of Chapter 13, whilst Section 18.4.1 uses the Sobel edge-detectors
of Section 15.2.4, the rest (Hough and tomography) requiring the Fourier
Transform(s) and Projection Theorem of Section 15.1.

Table of crude chapter dependencies.

A chapter depends on those it can
‘reach’ by going down the graph.

18 17

16

1412

13

11

10

94

7–8

1–3

5–6

15

Some paths to special places

Numbers refer to chapters. Fourier Transform means the continuous one and DFT the discrete. ONB is
orthonormal basis, PCA is Principal Component Analysis, Gaussian equals normal.

n-dim Gaussian or PCA (a choice)
ONB → eigenvalues/vectors → similarity → covariance → PCA or n-dim Gaussian

7 8 8 10 10

Simulating Gaussians
Independent vectors → moments → Central Limit Theorem → Cholesky factors → simulation
10 10 10 8 11

Huffman codes
Entropy → noiseless encoding → codetrees → Huffman
12 12 12 12

Channel Coding Theorem
Random variables → joint pdf → entropy → mutual entropy → capacity → Shannon Theorem

9 10 12 13 13 13

JPEG
ONBs & orthogonal matrices → complex numbers → Discrete Cosine Transform → JPEG

7 8 15 15
Wiener filter
Complex nos. → Fourier Transform → Convolution Thm → pdfs & Fourier → Wiener filter

8 14,15 15 15 15
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xxvi Introduction

Haar Wavelet Transform (images)
Inner product & ONBs → 1D Haar → 2D Haar→ Haar Image Transform

7 16 16 16

B-splines & Fourier
Fourier Transform (1D) → Convolution Thm. → φk as convolution → Fourier Transform

14 14 17 17

Perceptron
Dot product → perceptron → edge-detector → learning algorithm

7 18 18 18

Vector quantisation
Entropy → mutual entropy → rate distortion → LBG versus k-means

12 13 18 18

Tomography
Complex numbers → DFT → Fourier Transform → Rotation & Projection Thms → Tomography

8 15 15 15 18
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A word on notation

(1) (Vectors) We write vectors typically as x = (x1, . . . , xn), with the option x = (xi ) if n is
known from the context. Bold x emphasises the vector nature of such x.

(2) (Rows versus columns) For vector–matrix multiplication we may take vector x as a row,
indicated by writing x A, or as a column, indicated by Ax. The row notation is used through
Chapters 1–6 in harmony with the image of a point P under a transformation g being denoted
by Pg , so that successive operations appear on the right, thus:

xABC . . . and P f gh··· .

Any matrix equation with vectors as rows may be converted to its equivalent in terms of
columns, by transposition: e.g. x A = b becomes ATxT = bT. Finally, to keep matrices on
one line we may write Rows[R1, . . . , Rm], or just Rows[Ri ], for the matrix with rows Ri , and
similarly for columns, Cols[C1, . . . , Cn].

(3) (Block matrices) Every so often it is expedient to perform multiplication with matrices which
have been divided (partitioned) into submatrices called blocks. This is described in Section
7.2.5, where special attention should be paid to ‘Russian multiplication’.

(4) (Distributions) Provided there is no ambiguity we may use the letter p generically for prob-
ability distributions, for example p(x), p(y) and p(x, y) may denote the respective pdfs of
random variables X , Y and (X, Y ). In a similar spirit, the symbol list following concentrates
on those symbols which are used more widely than their first context of definition.

Here too we should mention that the normal and Gaussian distributions are the same thing,
the word Gaussian being perhaps preferred by those with a background in engineering.

xxvii
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Symbols

|λ| Absolute value of real number λ, modulus if
complex

page 8, 166, 167

|AB|, |a| Length of line segment AB, length of vector a 7
AB Line segment directed from point A to B 7
A(a1, a2) Point A with Cartesian coordinates (a1, a2) 7
a = (a1, a2) General vector a or position vector of point A 7
a · b Dot/scalar product

∑
ai bi 127

a × b Vector product of vectors a, b 141
g: X → Y Function (mapping) from X to Y
Pg and g(P) Image of P under mapping g 11
TAB The translation that sends point A to point B 17
Ta The translation given by x → x + a 11
RA(φ) Rotation in the plane about point A, through

signed angle φ

11, 12

RA(m/n) Rotation as above, through the fraction m/n of a
turn

12

Rm, RAB (In the plane) reflection in mirror line m, in line
through A, B

12

I The identity mapping, identity element of a
group

39, 40

g−1 The inverse of a function or group element g 32
hg The product g−1hg, for transformations or group

elements g, h
29

D2n The dihedral group of order 2n 38
R, Q, Z, N The real numbers, rationals, integers, and

naturals 1, 2, 3, . . .

23, 24

[a, b], (a, b) Closed interval a ≤ x ≤ b, open interval
a < x < b

230

xxix
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xxx Symbols

Rn Euclidean n-space 120, 121
i, j, k Unit vectors defining coordinate axes in 3-space 116
δik The Kronecker delta, equal to 1 if i = k,

otherwise 0
119

δ(x) The Dirac delta function 544
I = In The identity n × n matrix 127
Am×n Matrix A with m rows and n columns 127
aik or (A)ik The entry in row i , column k, of the matrix A 126, 127
diag {d1, . . . , dn} The square matrix whose diagonal elements are

di , the rest 0
128

AT, A−1 The transpose of matrix A, its inverse if square 128, 129
|A| or det A The determinant of a square matrix A 131
Tr A The trace (sum of the diagonal elements aii) of a

matrix A
164, 165

Eik Matrix whose i, k entry is 1, and the rest 0 140
〈A, B〉 Inner product of matrices (as long vectors) 203
‖A‖F, ‖A‖R Frobenius and ratio norms of matrix A (subscript

F may be omitted)
193

R(A), N (A) Row space, null space, of matrix A 172, 177
C The complex numbers z = x + yi, where

i2 = −1
162, 163

Re z, Im z, z̄, |z| Real part, imaginary part, conjugate, modulus
of z

163

eiθ The complex number cos θ + i sin θ 163
{xn}n≥1 Sequence x1, x2, x3, . . . 276
Z2 The field of size 2 469
A = AX Alphabet for a channel random variable X 445
A Attractor of an Iterated Function system 653
log x, log2 x, ln x Logarithm to given base, to base 2, to base e

(natural)
398

S Sample space in probability theory 210
Ac, A ∪ B, A ∩ B Complement, union, intersection, of sets or events 210, 211
P(A) Probability that event A occurs 212

nCr or
( n

r

)
Number of ways to choose r things from n.

Equals n!/(r !(n − r )!)
215

|A| Size of set or event A
P(A | B) Conditional probability of A given B 219
P(X = x) Probability that random variable X takes value x 227
E(X ) and V (X ) Expected value and variance of random

variable X
235, 237
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Symbols xxxi

X ∼ N (µ, σ 2) X is normal (Gaussian) with E(X ) = µ,

V (X ) = σ 2
245

�(x) Gamma function 238
�α,u(x) Gamma distribution with parameters α, u 249
X Sample mean 305
θ̂ Estimate of distribution parameter θ 309
f ∗g Convolution product: functions (‘continuous’),

arrays (‘discrete’)
271, 531

h = f ◦ g Elementwise product h(x) = f (x)g(x) 533
U [a, b] Uniform distribution on interval [a, b] 230
Cov(X, Y ) Covariance/correlation between random

variables X , Y
285

Cov(X ) Covariance matrix of random vector X = (Xi ) 287
H (X ) =

H(p1, . . . , pn)
Entropy of random variable X with pdf

{p1, . . . , pn}
397

H (x) Same as H (x, 1 − x), 0 ≤ x ≤ 1 399
d(p‖q) Kullback–Liebler distance between probability

distributions p(x), q(x)
432

H (X, Y ), H (X |Y ) Joint entropy, conditional entropy 446
I (X ; Y ) Mutual entropy 446
f → F Fourier Transform. F is also written f̂ or F[ f ] 523, 524, 542
R f g Cross-correlation of functions f, g 544
sinc(x) (sin πx)/πx (sometimes (sin x)/x , as in

Section 14.3)
542

∇2 f Laplacian of f 573
LoG, DoG Laplacian of Gaussian, Difference of Gaussians 594
ψ(x), ψ j

i (x) Mother wavelet, derived wavelets 659
W j , � j (x) Wavelet space, basis 665
V j , � j (x) Scaling space, basis 665
V

⊕
W Sum of vector spaces 662

P, Q, A, B Filter bank matrices 666, 667
P0 . . . Pn Control polygon 668
b(t), φk(x) Box function, spline function 693
Ni,m(x) B-spline basis function of order m, degree m-1, 698
(. . . , r−1, r0, r1, . . .) Averaging mask for subdivision 711
e j

i (x) Hat function 711
〈 f, h〉 Inner product of functions f and h 660, 748
G Gram matrix of inner products: gik = 〈 fi , hk〉

(allows h = f )
721
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xxxii Symbols

f∗(x) Reciprocal polynomial of f (x) (coefficents in
reverse order)

483

tanh(x) Hyperbolic tangent (ex − e−x )/(ex + e−x ) 769
�w Update to weight vector w 771
h(X ) Differential entropy of continuous random

variable X
794

R, R(D) Code rate, Shannon’s Rate Distortion function 464, 805
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