CAMBRIDGE STUDIES IN
ADVANCED MATHEMATICS: 51

EDITORIAL BOARD
W. FULTON, T. TOM DIECK, P. WALTERS

SPINNING TOPS
Already published

1. W.M.L. Holcombe Algebraic automata theory
2. K. Petersen Ergodic theory
3. P.T. Johnstone Stone spaces
4. W.H. Schikhof Ultrametric calculus
5. J.-P. Kahane Some random series of functions, 2nd edition
6. H. Cohn Introduction to the construction of class fields
7. J. Lambek & P.J. Scott Introduction to higher-order categorical logic
8. H. Matsumura Commutative ring theory
9. C.B. Thomas Characteristic classes and the cohomology of finite groups
10. M. Aschbacher Finite group theory
11. J.L. Alperin Local representation theory
12. P. Koosis The logarithmic integral I
13. A. Flett Eigenvalues and s-numbers
15. H.J. Baus Algebraic homotopy
16. V.S. Varadarajan Introduction to harmonic analysis on semisimple Lie groups
17. W. Dicks & M. Dunwoody Groups acting on graphs
18. L.J. Corwin & F.P. Greenleaf Representations of nilpotent Lie groups and their applications
19. R. Fritsch & R. Piccinini Cellular structures in topology
20. H. Klingen Introductory lectures on Siegel modular forms
21. M.J. Collins Representations and characters of finite groups
22. H. Kunita Stochastic flows and stochastic differential equations
23. P. Wojtaszczyk Banach spaces for analysts
24. J.E. Gilbert & M.A.M. Murray Clifford algebras and Dirac operators in harmonic analysis
25. A. Frohlich & M.J. Taylor Algebraic number theory
26. K. Goebel & W.A. Kirk Topics in metric fixed point theory
27. J.E. Humphreys Reflection groups and Coxeter groups
28. D.J. Benson Representations and cohomology I
29. D.J. Benson Representations and cohomology II
30. C. Allsby & V. Poppe Cohomological methods in transformation groups
31. T. Soule et al. Lectures on Arakelov geometry
32. A. Ambrosetti & G. Prodi A primer of nonlinear analysis
33. J. Palis & F. Takens Hyperbolicity, stability and chaos at homoclinic bifurcations
34. Y. Meyer Wavelets and operators I
35. C. Weibel An introduction to homological algebra
36. W. Bruns & J. Herzog Cohen-Macaulay rings
37. V. Snash Explicit Brauer induction
38. G. Laumon Cohomology of Drinfeld modular varieties I
39. E.B. Davies Spectral theory and differential operators
40. J. Dieudonne, H. Jarchow & A. Tonge Absolutely summing operators
41. P. Mattila Geometry of sets and measures in Euclidean spaces
42. L. Pinsky Positive harmonic functions and diffusion
43. G. Tenenbaum Introduction to analytic and probabilistic number theory
44. N. Peckin An algebraic introduction to complex projective geometry I
45. Y. Meyer & R. Coifman Wavelets and operators II
46. R. Stanley Enumerative combinatorics
47. I. Porteous Clifford algebras and the classical groups
48. M. Audin Spinning tops
49. V. Jurdjevic Geometric control theory
50. H. Voelklein Groups as Galois groups
51. J. Le Potier Lectures on vector bundles
52. D. Bump Automorphic forms
53. G. Laumon Cohomology of Drinfeld modular varieties II
54. C. Clarke & B.A. Davey Natural dualities for the working algebraist
55. P. Taylor Practical foundations of mathematics
56. M. Brodmann & R. Sharp Local cohomology
57. J. Jost & X. Li-Jost Calculus of variations

© Cambridge University Press

www.cambridge.org
Spinning tops
A Course on Integrable Systems

Michèle Audin

Institute de Recherche Mathématique Avancée
Université Louis Pasteur et CNRS
Contents

<table>
<thead>
<tr>
<th>Acknowledgements</th>
<th>vii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1 Completely integrable systems</td>
<td>2</td>
</tr>
<tr>
<td>2 The Arnold-Liouville theorem</td>
<td>5</td>
</tr>
<tr>
<td>3 A discourse on the method</td>
<td>6</td>
</tr>
<tr>
<td>4 About this book</td>
<td>11</td>
</tr>
<tr>
<td>5 Notation</td>
<td>13</td>
</tr>
<tr>
<td>I The rigid body with a fixed point</td>
<td>15</td>
</tr>
<tr>
<td>1 The equations</td>
<td>15</td>
</tr>
<tr>
<td>2 The question of integrability</td>
<td>18</td>
</tr>
<tr>
<td>3 The three-dimensional free rigid body and the Euler-Poinsot case</td>
<td>21</td>
</tr>
<tr>
<td>II The symmetric spinning top</td>
<td>27</td>
</tr>
<tr>
<td>1 Introduction to the symmetric spinning top</td>
<td>27</td>
</tr>
<tr>
<td>2 A Lax pair and what follows</td>
<td>32</td>
</tr>
<tr>
<td>III The Kowalevski top</td>
<td>45</td>
</tr>
<tr>
<td>1 Kowalevski’s method</td>
<td>45</td>
</tr>
<tr>
<td>2 Lax pair and spectral curves</td>
<td>52</td>
</tr>
<tr>
<td>3 Lax pairs for generalised spinning tops and applications</td>
<td>60</td>
</tr>
<tr>
<td>IV The free rigid body</td>
<td>65</td>
</tr>
<tr>
<td>1 The Euler and Manakov equations</td>
<td>65</td>
</tr>
<tr>
<td>2 The dimension-3 free rigid body</td>
<td>66</td>
</tr>
<tr>
<td>3 Remarks on the dimension-4 rigid body</td>
<td>69</td>
</tr>
<tr>
<td>V Non-compact levels: a Toda lattice</td>
<td>77</td>
</tr>
<tr>
<td>1 The differential system and the spectral curve</td>
<td>77</td>
</tr>
<tr>
<td>2 The eigenvector mapping: the n = 2 case</td>
<td>83</td>
</tr>
</tbody>
</table>
Appendices

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix 1</td>
<td>A Poisson structure on the dual of a Lie algebra</td>
<td>91</td>
</tr>
<tr>
<td>Appendix 2</td>
<td>R-matrices and the “AKS theorem”</td>
<td>98</td>
</tr>
<tr>
<td>Appendix 3</td>
<td>The eigenvector mapping and linearising flows</td>
<td>104</td>
</tr>
<tr>
<td>Appendix 4</td>
<td>Complex curves, real curves and their Jacobians</td>
<td>113</td>
</tr>
<tr>
<td>Appendix 5</td>
<td>Prym varieties</td>
<td>124</td>
</tr>
</tbody>
</table>

References

Page 131

Index

Page 137
Acknowledgements

Among the works in which I have learned the most, there are three papers that I wish to mention here. I think that I was very lucky to start my initiation to integrable systems by reading two very beautiful papers that are not among the most cited, those of Verdier [84] and Griffiths [36]. On the one hand, Verdier had the brilliant idea of illustrating his exposition of the work of Adler and van Moerbeke by the example of the symmetric top. On the other hand, Griffiths’ main philosophical point was to look at a Lax equation, without specifying anything more. The advantage of this approach is that it allows one to start working without having first ingested loop algebras and the “AKS theorem”. Moreover, in this sober presentation, the role played by the eigenvectors of the Lax matrices is amply brought to light. The algebraic geometry related to these eigenvectors is extremely well described in Reyma’s paper [74] – which is the third paper to which I feel indebted.

The present text originates mainly from several talks I have given on the examples here, in particular on the work I have done jointly with R. Silhol [15] and from a graduate course I taught in Strasbourg in 1992-93, jointly with J.-Y. Méringol, on “Algebraic curves and integrable systems”. The first version, *Toiles, un cours sur les systèmes intégrables* was written at the end of 1993. I am very pleased to acknowledge the influence of the very clear survey of Reyma & Semenov-Tian-Shanski [77] on the present version.

I have learned a lot in discussions with Jean-Yves Méringol, Robert Silhol, and, especially, Alexei Reyman.

A lot of people have helped me to understand the material here, by criticism, questions or simply remarks during a talk, among which are, colleagues or students, Nicole Bopp, Nicole Desolleux-Mouili, Ljubomir Gavrilov, Sophie Gérardy, Bertrand Haas, Patrick Iglesias, Viacheslav Kharlamov, Dmitri Markushevich, Nguyen Tien Dung, Nitin Niture, Leonid Polterovich, Claude Sabbah, Jean-Marie Strelcyn, Jean Stutzmann and Pol Vanhaecke. I wish to thank them all.

The pictures in this book have been created by Raymond Seroul, whom I am also very pleased to thank.

Michele Audin
Strasbourg, January 30, 1996

1 I thank all the people who have invited me to give or listened to me giving talks in Basel, Bochum, Bombay, Boston, Cambridge, Haifa, Lausanne, Luminy, Lyon, Montréal, Paris, Nantes, Strasbourg, Tel-Aviv.
Acknowledgements

Last, but not least, I wish to thank the staff of Cambridge University Press, especially David Tranah, who kindly welcomed the book, and Susan Parkinson, who was very helpful in improving the English.

Michèle Audin
Strasbourg, January 8, 1996

For the paperback edition, I have only corrected a few misprints.

Strasbourg, May 1, 1999