Testing of Digital Systems

Device testing represents the single largest manufacturing expense in the semiconductor industry, costing over \$40 billion a year. The most comprehensive and wide ranging book of its kind, *Testing of Digital Systems* covers everything you need to know about this vitally important subject. Starting right from the basics, the authors take the reader through automatic test pattern generation, design for testability and built-in self-test of digital circuits before moving on to more advanced topics such as I_{DDQ} testing, functional testing, delay fault testing, CMOS testing, memory testing, and fault diagnosis. The book includes detailed treatment of the latest techniques including test generation for various fault models, discussion of testing techniques at different levels of the integrated circuit hierarchy and a chapter on system-on-a-chip test synthesis. Written for students and engineers, it is both an excellent senior/graduate level textbook and a valuable reference.

Niraj K. Jha is Professor of Electrical Engineering at Princeton University and head of the Center of Embedded System-on-a-Chip Design, where his current research is focussed on the synthesis and testing of these devices. He is a fellow of IEEE, associate editor of *IEEE Transactions on Computer-Aided Design* and the *Journal of Electronic Testing: Theory and Applications (JETTA)* and a recipient of the AT&T Foundation award and the NEC preceptorship award for research excellence.

Sandeep Gupta is an Associate Professor in the Department of Electrical Engineering at the University of Southern California. He is Co-Director of the M.S. Program in VLSI Design, with research interests in the area of VLSI testing and design. He is a member of IEEE.

Testing of Digital Systems

N. K. Jha and S. Gupta

> PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York, NY 10011-4211, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia Ruiz de Alarcón 13, 28014, Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

© Cambridge University Press 2003

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2003

Printed in the United Kingdom at the University Press, Cambridge

Typeface Times 10.5/14pt. System $IAT_{FX} 2_{\varepsilon}$ [DBD]

A catalogue record of this book is available from the British Library

ISBN 0 521 77356 3 hardback

To family and friends for their encouragement and understanding, to teachers and colleagues for sharing their wisdom, to students for sharing their curiosity.

Contents

	Preface		<i>page</i> xiii
	List	of gate symbols	xvi
1	Introduction by Ad van de Goor		1
	1.1	Faults and their manifestation	1
	1.2	An analysis of faults	3
	1.3	Classification of tests	11
	1.4	Fault coverage requirements	14
	1.5	Test economics	16
2	Fault models		26
	2.1	Levels of abstraction in circuits	26
	2.2	Fault models at different abstraction levels	28
	2.3	Inductive fault analysis	41
	2.4	Relationships among fault models	44
3	Combinational logic and fault simulation		49
	3.1	Introduction	49
	3.2	Preliminaries	52
	3.3	Logic simulation	64
	3.4	Fault simulation essentials	75
	3.5	Fault simulation paradigms	82
	3.6	Approximate, low-complexity fault simulation	120

Cambridge University Press 0521773563 - Testing of Digital Systems N. K. Jha and S. Gupta Frontmatter <u>More information</u>

viii	Contents			
4	Test generation for combinational circuits			
	4.1 Introduction		134	
	4.2 Composite cir	cuit representation and value systems	136	
	4.3 Test generation	n basics	147	
	4.4 Implication		153	
	4.5 Structural test	generation: preliminaries	180	
	4.6 Specific struc	tural test generation paradigms	197	
	4.7 Non-structura	l test generation techniques	223	
	4.8 Test generation	on systems	235	
	4.9 Test generation	n for reduced heat and noise during test	250	
	Appendix 4.A	Implication procedure	262	
5	Sequential ATPC	ì	266	
	5.1 Classification	of sequential ATPG methods and faults	266	
	5.2 Fault collapsi	ng	273	
	5.3 Fault simulati	on	277	
	5.4 Test generation	on for synchronous circuits	285	
	5.5 Test generation	on for asynchronous circuits	303	
	5.6 Test compacti	on	306	
6	I _{DDQ} testing		314	
	6.1 Introduction		314	
	6.2 Combinations	1 ATPG	314	
	6.3 Sequential AT	PG	310	
	6.4 Fault diagnos	is of combinational circuits	333	
	6.5 Built-in curre	nt sensors	340	
	6.6 Advanced cor	ncepts in current sensing based testing	342	
	6.7 Economics of	$I_{\rm DDQ}$ testing	348	
7	Functional testin	ıg	356	
	7 1 Universal test	sets	256	
	7.1 Universal test	sets	350	
	7.2 I secure logic	array testing	359	
	7.5 nerative logic	aray using	500	

ix

Cambridge University Press 0521773563 - Testing of Digital Systems N. K. Jha and S. Gupta Frontmatter <u>More information</u>

Contents

8	Delay fault testing	382
	8.1 Introduction	382
	8.2 Combinational test generation	394
	8.3 Combinational fault simulation	412
	8.4 Combinational delay fault diagnosis	421
	8.5 Sequential test generation	424
	8.6 Sequential fault simulation	428
	8.7 Pitfalls in delay fault testing and some remedies	432
	8.8 Unconventional delay fault testing techniques	435
9	CMOS testing	445
	9.1 Testing of dynamic CMOS circuits	445
	9.2 Testing of static CMOS circuits	456
	9.3 Design for robust testability	470
10	Fault diagnosis	482
	10.1 Introduction	482
	10.2 Notation and basic definitions	484
	10.3 Fault models for diagnosis	489
	10.4 Cause-effect diagnosis	495
	10.5 Effect-cause diagnosis	517
	10.6 Generation of vectors for diagnosis	539
11	Design for testability	560
	11.1 Introduction	560
	11.2 Scan design	562
	11.3 Partial scan	577
	11.4 Organization and use of scan chains	594
	11.5 Boundary scan	617
	11.6 DFT for other test objectives	654

X

Cambridge University Press 0521773563 - Testing of Digital Systems N. K. Jha and S. Gupta Frontmatter <u>More information</u>

Contents

12	Built-in self-test	680
	12.1 Introduction	680
	12.2 Pattern generators	682
	12.3 Estimation of test length	697
	12.4 Test points to improve testability	708
	12.5 Custom pattern generators for a given circuit	715
	12.6 Response compression	729
	12.7 Analysis of aliasing in linear compression	738
	12.8 BIST methodologies	745
	12.9 In-situ BIST methodologies	755
	12.10 Scan-based BIST methodologies	769
	12.11 BIST for delay fault testing	775
	12.12 BIST techniques to reduce switching activity	780
13	Synthesis for testability	799
	13.1 Combinational logic synthesis for stuck-at fault testability	799
	13.2 Combinational logic synthesis for delay fault testability	819
	13.3 Sequential logic synthesis for stuck-at fault testability	829
	13.4 Sequential logic synthesis for delay fault testability	836
14	Memory testing	845
	by Ad van de Goor	
	14.1 Motivation for testing memories	845
	14.2 Modeling memory chips	846
	14.3 Reduced functional faults	852
	14.4 Traditional tests	864
	14.5 March tests	868
	14.6 Pseudorandom memory tests	878
15	High-level test synthesis	893
	15.1 Introduction	893
	15.2 RTL test generation	894
	15.3 RTL fault simulation	912

Cambridge University Press 0521773563 - Testing of Digital Systems N. K. Jha and S. Gupta Frontmatter <u>More information</u>

xi	Contents			
	15.4 RTL design for testability	914		
	15.5 RTL built-in self-test	929		
	15.6 Behavioral modification for testability	937		
	15.7 Behavioral synthesis for testability	939		
16	System-on-a-chip test synthesis	953		
	_			
	16.1 Introduction	953		
	16.2 Core-level test	954		
	16.3 Core test access	955		
	16.4 Core test wrapper	977		
	Index	983		

Preface

The fraction of the industrial semiconductor budget that manufacturing-time testing consumes continues to rise steadily. It has been known for quite some time that tackling the problems associated with testing semiconductor circuits at earlier design levels significantly reduces testing costs. Thus, it is important for hardware designers to be exposed to the concepts in testing which can help them design a better product. In this era of system-on-a-chip, it is not only important to address the testing issues at the gate level, as was traditionally done, but also at all other levels of the integrated circuit design hierarchy.

This textbook is intended for senior undergraduate or beginning graduate levels. Because of its comprehensive treatment of digital circuit testing techniques, it can also be gainfully used by practicing engineers in the semiconductor industry. Its comprehensive nature stems from its coverage of the transistor, gate, register-transfer, behavior and system levels of the design hierarchy. In addition to test generation techniques, it also covers design for testability, synthesis for testability and built-in self-test techniques in detail. The emphasis of the text is on providing a thorough understanding of the basic concepts; access to more advanced concepts is provided through a list of additional reading material at the end of the chapter.

The contents of the book are such that it contains all the material required for a first, one-semester, course in Testing (approximately 40 hours of teaching). The chapters are organized such that seven of the chapters contain mandatory material, while a selection from the remaining chapters may optionally be included.

Each chapter contains a set of exercises with different difficulty levels which can be used for in-class, as well as take-home exercises or tests.

In addition, the chapters contain many examples and a summary.

Chapter 1 introduces the readers to basic concepts in testing, such as faults, errors, tests, failure rate, fault coverage, and test economics.

Chapter 2 deals with fault models at various levels of the integrated circuit design hierarchy, e.g., behavioral, functional, structural, switch-level and geometric fault models. It also discusses different types of delay models, and inductive fault analysis.

Chapter 3 describes how fault-free and faulty circuit elements can be represented. It discusses a logic simulation algorithm and ways to accelerate logic simulation. It then proceeds to fault simulation, starting with well-known fault collapsing and

xiv Preface

fault dropping concepts. It discusses the following fault simulation paradigms in detail: parallel fault simulation, parallel-pattern single-fault propagation simulation, deductive fault simulation, concurrent fault simulation, and critical path tracing. It also provides a brief background into approximate, low-complexity fault simulation approaches.

Chapter 4 covers test generation for combinational circuits. It starts with a discussion of composite circuit representation and value systems. Then it proceeds to basic concepts in test generation and implication procedures. Structural test generation algorithms and testability analysis techniques are targeted next. These include the *D*-algorithm, PODEM and their enhancements. Next, non-structural algorithms such as those based on satisfiability and binary decision diagrams are covered. Static and dynamic test compaction techniques and test generation algorithms for reduced heat and noise complete the chapter.

Chapter 5 deals with test generation for sequential circuits. It first classifies sequential test generation methods and faults. This is followed by discussion of fault collapsing and fault simulation. Test generation methods covered are those that start from a state table or gate-level implementation. Testing of asynchronous sequential circuits is also included. The chapter ends with a discussion of sequential test compaction methods.

Chapter 6 discusses I_{DDQ} testing. For combinational circuits, it targets testing of leakage faults and unrestricted bridging faults as well as test compaction. For sequential circuits, it targets test generation, fault simulation and test compaction. Under fault diagnosis, it covers analysis, diagnostic fault simulation and diagnostic test generation. It then introduces built-in current sensors. Under advanced I_{DDQ} testing concepts, it discusses i_{DD} pulse response testing, dynamic current testing, depowering, current signatures, and applicability of I_{DDQ} testing to deep submicron designs. It ends with a discussion on economics of I_{DDQ} testing.

Chapter 7 covers universal test sets, various types of pseudoexhaustive testing, and iterative logic array testing under the umbrella of functional testing.

Chapter 8 describes delay fault testing methods in detail. It first gives a classification of various types of delay faults. Then it provides test generation and fault simulation methods for combinational and sequential circuits containing the different types of delay faults. It also discusses some pitfalls of delay fault testing and how to overcome them. It closes with some advanced delay fault testing techniques.

Chapter 9 deals with test generation methods for static and dynamic CMOS circuits for stuck-open and stuck-on faults. It discusses the test invalidation problem for static CMOS circuits and design for testability methods to avoid them.

Chapter 10 covers fault diagnosis techniques. It includes both cause–effect and effect–cause diagnosis methods. It also discusses diagnostic test generation.

Chapter 11 describes design for testability methods. It discusses scan design, both full and partial, in considerable detail. It goes on to describe organization and use of

xv Preface

scan chains. It then discusses boundary scan. It finally describes design for testability techniques for delay faults and low heat dissipation.

Chapter 12 discusses built-in self-test (BIST) techniques. It starts with the basic concepts such as pattern generation, computation of test length, response compression, and aliasing analysis. It then proceeds to BIST methodologies, both in-situ and scan-based.

Chapter 13 concentrates on synthesis for testability techniques at the gate level. It covers many techniques under stuck-at and delay fault testability of combinational and sequential circuits.

Chapter 14 deals with memory testing. The topics covered are: reduced functional faults, traditional memory tests, March tests, pseudorandom memory tests, and BIST for embedded memories.

Chapter 15 discusses high-level test synthesis. It deals with the register-transfer and behavior levels of the design hierarchy. It describes hierarchical and high-level test generation techniques first. Then it discusses design for testability, synthesis for testability, and BIST techniques at the register-transfer and behavior levels.

Chapter 16 covers the modern topic of system-on-a-chip test synthesis. It discusses core-level test, core test access and core test wrappers.

The core chapters are Chapters 1, 2, 3, 4, 5, 11 and 12. These describe fault models, fault simulation and test generation for combinational and sequential circuits, design for testability and BIST. In a one semester course, if test generation needs to be emphasized, then this material can be augmented with a subset of Chapters 6, 7, 8, 9, 10 and 14. These chapters deal with I_{DDQ} testing, functional testing, delay fault testing, CMOS testing, fault diagnosis and memory testing, respectively. Alternatively, if synthesis for testability and testing at register-transfer, behavior and system levels need to be emphasized, the instructor can choose from Chapters 13, 15 and 16.

This book would not have been possible without help from many people. We first want to acknowledge Prof. Ad van de Goor who wrote the Introduction and Memory Testing chapters. We would like to thank our colleagues throughout the world who have used preprints of this book and given valuable feedback. These include Profs. S. Blanton, K.-T. Cheng, S. Dey, D. Ha, J. P. Hayes, J. Jacob, P. Mazumder, I. Pomeranz, D. Pradhan, S. M. Reddy, and S. Seth. We are indebted to our copy editor, F. Nex, who discovered some latent bugs. Finally, our thanks go to the students at Princeton University and University of Southern California who helped make the book better through their helpful suggestions.

Niraj K. Jha Sandeep Gupta

Gate symbols

