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Introduction

Statistics concerns what can be learned from data. Applied statistics comprises a
body of methods for data collection and analysis across the whole range of science,
and in areas such as engineering, medicine, business, and law — wherever variable
data must be summarized, or used to test or confirm theories, or to inform decisions.
Theoretical statistics underpins this by providing a framework for understanding the
properties and scope of methods used in applications.
Statistical ideas may be expressed most precisely and economically in mathemat-

ical terms, but contact with data and with scientific reasoning has given statistics a
distinctive outlook. Whereas mathematics is often judged by its elegance and gener-Charles Robert Darwin

(1809–1882) was rich
enough not to have to earn
his living. His reading and
studies at Edinburgh and
Cambridge exposed him
to contemporary scientific
ideas, and prepared him
for the voyage of the
Beagle (1831–1836),
which formed the basis of
his life’s work as a
naturalist — at one point
he spent 8 years dissecting
and classifying barnacles.
He wrote numerous books
including The Origin of
Species, in which he laid
out the theory of evolution
by natural selection.
Although his proposed
mechanism for natural
variation was never
accepted, his ideas led to
the biggest intellectual
revolution of the 19th
century, with
repercussions that
continue today. Ironically,
his own family was
in-bred and his health
poor. See Desmond and
Moore (1991).

ality, many statistical developments arise as a result of concrete questions posed by
investigators and data that they hope will provide answers, and elegant and general
solutions are not always available. The huge variety of such problems makes it hard
to develop a single over-arching theory, but nevertheless common strands appear.
Uniting them is the idea of a statistical model.
The key feature of a statisticalmodel is that variability is represented using probabil-

ity distributions, which form the building-blocks fromwhich themodel is constructed.
Typically it must accommodate both random and systematic variation. The random-
ness inherent in the probability distribution accounts for apparently haphazard scatter
in the data, and systematic pattern is supposed to be generated by structure in the
model. The art of modelling lies in finding a balance that enables the questions at
hand to be answered or new ones posed. The complexity of the model will depend on
the problem at hand and the answer required, so different models and analyses may
be appropriate for a single set of data.

Examples

Example 1.1 (Maize data) Charles Darwin collected data over a period of years
on the heights of Zea mays plants. The plants were descended from the same parents
and planted at the same time. Half of the plants were self-fertilized, and half were
cross-fertilized, and the purpose of the experiment was to compare their heights. To
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2 1 · Introduction

Table 1.1 Heights of
young Zea mays plants,
recorded by Charles
Darwin (Fisher, 1935a,
p. 30).

Height (eighths of an inch)

Pot Crossed Self-fertilized Difference

I 188 139 49
96 163 −67
168 160 8

II 176 160 16
153 147 6
172 149 23

III 177 149 28
163 122 41
146 132 14
173 144 29
186 130 56

IV 168 144 24
177 102 75
184 124 60
96 144 −48
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plots for Darwin’s Zea
mays data. The left panel
compares the heights for
the two different types of
fertilization. The right
panel shows the difference
for each pair plotted
against the pair average.

this end Darwin planted them in pairs in different pots. Table 1.1 gives the resulting
heights. All but two of the differences between pairs in the fourth column of the table
are positive, which suggests that cross-fertilized plants are taller than self-fertilized
ones.
This impression is confirmed by the left-hand panel of Figure 1.1, which sum-

marizes the data in Table 1.1 in terms of a boxplot. The white line in the centre of
each box shows the median or middle observation, the ends of each box show the
observations roughly one-quarter of the way in from each end, and the bars attached
to the box by the dotted lines show the maximum and minimum, provided they are
not too extreme.
Cross-fertilized plants seem generally higher than self-fertilized ones. Overlaid

on this systematic variation, there seems to be variation that might be ascribed to
chance: not all the plants within each group have the same height. It might be possible,
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1 · Introduction 3

and for some purposes even desirable, to construct a mechanistic model for plant
growth that could explain all the variation in such data. This would take into account
genetic variation, soil and moisture conditions, ventilation, lighting, and so forth,
through a vast system of equations requiring numerical solution. For most purposes,
however, a deterministic model of this sort is quite unnecessary, and it is simpler and
more useful to express variability in terms of probability distributions.
If the spread of heights within each group is modelled by random variability, the

same cause will also generate variation between groups. This occurred to Darwin,Francis Galton
(1822–1911) was a cousin
of Darwin from the same
wealthy background. He
explored in Africa before
turning to scientific work,
in which he showed a
strong desire to quantify
things. He was one of the
first to understand the
implications of evolution
for homo sapiens, he
invented the term
regression and contributed
to statistics as a
by-product of his belief in
the improvement of
society via eugenics. See
Stigler (1986).

who asked his cousin, Francis Galton, whether the difference in heights between the
types of plants was too large to have occurred by chance, and was in fact due to
the effect of fertilization. If so, he wanted to estimate the average height increase.
Galton proposed an analysis based essentially on the following model. The height of
a self-fertilized plant is taken to be

Y = µ + σε, (1.1)

where µ and σ are fixed unknown quantities called parameters, and ε is a random
variable with mean zero and unit variance. Thus the mean of Y is µ and its variance
is σ 2. The height of a cross-fertilized plant is taken to be

X = µ + η + σε, (1.2)

where η is another unknown parameter. The mean height of a cross-fertilized plantRonald Aylmer Fisher
(1890–1962) was born in
London and educated
there and at Cambridge,
where he had his first
exposure to Mendelian
genetics and the biometric
movement. After
obtaining the exact
distributions of the t
statistic and the
correlation coefficient, but
also having begun a
life-long endeavour to
give a Mendelian basis for
Darwin’s evolutionary
theory, he moved in 1919
to Rothamsted
Experimental Station,
where he built the
theoretical foundations of
modern statistics, making
fundamental contributions
to likelihood inference,
analysis of variance,
randomization and the
design of experiments. He
wrote highly influential
books on statistics and on
genetics. He later held
posts at University
College London and
Cambridge, and died in
Adelaide. See Fisher Box
(1978).

is µ + η and its variance is σ 2. In (1.1) and (1.2) variation within the groups is
accounted for by the randomness of ε, whereas variation between groups is modelled
deterministically by the difference between the means of Y and X . Under this model
the questions posed by Darwin amount to:

� is η non-zero?
� Can we estimate η and state the uncertainty of our estimate?

Galton’s analysis proceeded as if the observations from the self-fertilized plants,
Y1, . . . , Y15, were independent and identically distributed according to (1.1), and
those from the cross-fertilized plants, X1, . . . , X15, were independent and identically
distributed according to (1.2). If so, it is natural to estimate the group means by
Y = (Y1 + · · · + Y15)/15 and X = (X1 + · · · + X15)/15, and to compare Y and X .
In fact Galton proposed another analysis which we do not pursue.
In discussing this experiment many years later, R. A. Fisher pointed out that the

model based on (1.1) and (1.2) is inappropriate. In order to minimize differences in
humidity, growing conditions, and lighting, Darwin had taken the trouble to plant the
seeds in pairs in the same pots. Comparison of different pairs would therefore involve
these differences, which are not of interest, whereas comparisons within pairs would
depend only on the type of fertilization. A model for this writes

Y j = µ j + σε1 j , X j = µ j + η + σε2 j , j = 1, . . . , 15. (1.3)

The parameter µ j represents the effects of the planting conditions for the j th pair,
and the εg j are taken to be independent random variables with mean zero and unit
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4 1 · Introduction

Table 1.2 Failure times
(in units of 103 cycles) of
springs at cycles of
repeated loading under the
given stress (Cox and
Oakes, 1984, p. 8). +
indicates that an
observation is
right-censored. The
average and estimated
standard deviation for
each level of stress are y
and s.

Stress (N/mm2)

950 900 850 800 750 700

225 216 324 627 3402 12510+
171 162 321 1051 9417 12505+
198 153 432 1434 1802 3027
189 216 252 2020 4326 12505+
189 225 279 525 11520+ 6253
135 216 414 402 7152 8011
162 306 396 463 2969 7795
135 225 379 431 3012 11604+
117 243 351 365 1550 11604+
162 189 333 715 11211 12470+

y 168 215 348 803 5636 9828
s 33 43 58 544 3864 3355

variance. The µ j could be eliminated by basing the analysis on the X j − Y j , which
have mean η and variance 2σ 2.
The right panel of Figure 1.1 shows a scatterplot of pair differences x j − y j against

pair averages (y j + x j )/2. The two negative differences correspond to the pairs with
the lowest averages. The averages vary widely, and it seems wise to allow for this by
analyzing the differences, as Fisher suggested. �

Both models in Example 1.1 summarize the effect of interest, namely the mean
difference in heights of the plants, in terms of a fixed but unknown parameter. Other
aspects of secondary interest, such as the mean height of self-fertilized plants, are
also summarized by the parametersµ and σ of (1.1) and (1.2), andµ1, . . . , µ15 and σ

of (1.3). But even if the values of all these parameters were known, the distributions
of the heights would still not be known completely, because the distribution of ε has
not been fully specified. Such a model is called nonparametric. If we were willing
to assume that ε has a given distribution, then the distributions of Y and X would be
completely specified once the parameters were known, giving a parametric model.
Most of this book concerns such models.
The focus of interest in Example 1.1 is the relation between the height of a plant

and something that can be controlled by the experimenter, namely whether it is self-
or cross-fertilized. The essence of the model is to regard the height as random with a
distribution that depends on the type of fertilization, which is fixed for each plant. The
variable of primary interest, in this instance height, is called the response, and the vari-
able on which it depends, the type of fertilization, is called an explanatory variable or
a covariate. Many questions arising in data analysis involve the dependence of one or
more variables on another or others, but virtually limitless complications can arise.

Example 1.2 (Spring failure data) In industrial experiments to assess their reli-
ability, springs were subjected to cycles of repeated loading until they failed. The
failure ‘times’, in units of 103 cycles of loading, are given in Table 1.2. There were
60 springs divided into groups of 10 at each of six different levels of stress.
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Figure 1.2 Failure times
(in units of 103 cycles) of
springs at cycles of
repeated loading under the
given stress. The left
panel shows failure time
boxplots for the different
stresses. The right panel
shows a rough linear
relation between log
average and log variance
at the different stresses.

As stress decreases there is a rapid increase in the average number of cycles to
failure, to the extent that at the lowest levels, where the failure time is longest, the
experiment had to be stopped before all the springs had failed. The observations are
right-censored: the recorded value is a lower bound for the number of cycles to failure
that would have been observed had the experiment been continued to the bitter end.
A right-censored observation is indicated as, say, 11520+, indicating that the failure
time would be greater than 11520.
Let us represent the j th number of cycles to failure at the kth loading by yl j , for

j = 1, . . . , 10 and l = 1, . . . , 6. Table 1.2 shows the average failure time for each
loading, yl· = 10−1∑ j yl j , and the sample standard deviation, sl , where the sample
variance is s2l = (10− 1)−1∑ j (yl j − yl·)2. The average and variance at the lowest
stresses underestimate the true values, because of the censoring. The average and
standard deviation decrease as stress increases.
The boxplots in the left panel of Figure 1.2 show that the cycles to failure at

each stress have the marked pattern already described. The right panel shows the log
variance, log s2l , plotted against the log average, log yl·. It shows a linear pattern with
slope approximately two, suggesting that variance is proportional to mean squared
for these data.
Our inspection has revealed that:

(a) failure times are positive and range from 117–12510×103 or more cycles;
(b) there is strong dependence between the mean and variance;
(c) there is strong dependence of failure time on stress; and
(d) some observations are censored.

To proceed further, wewould need to know how the data were gathered. Do system-
atic patterns, ofwhichwe have been told nothing, underlie the data? For example,were
all 60 springs selected at random from a larger batch and then allocated to the different
stresses at random? Or were the ten springs at 950 N/mm2 selected from one batch,
the ten springs at 900 N/mm2 from another, and so on? If so, the apparent dependence
on stress might be due to differences among batches. Were all measurements made
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6 1 · Introduction

with the same machine? If the answers to these and other such questions were un-
satisfactory, we might suggest that better data be produced by performing another
experiment designed to control the effects of different sources of variability.
Suppose instead that we are provisionally satisfied that we can treat observations

at each loading as independent and identically distributed, and that the apparent
dependence between cycles to failure and stress is not due to some other factor. With
(a) and (b) in mind, we aim to represent the failure time at a given stress level by a
randomvariableY that takes continuous positive values andwhose probability density
function f (y; θ ) keeps the ratio (mean)2/variance constant. Clearly it is preferable if
the same parametric form is used at each stress and the effect of changing stress enters
only through θ . A simple model is that Y has exponential density

f (y; θ ) = θ−1 exp(−y/θ ), y > 0, θ > 0, (1.4)

whose mean and variance are θ and θ2, so that (mean)2 = variance. We can express
systematic variation in the density of Y in terms of stress, x , by

θ = 1

βx
, x > 0, β > 0, (1.5)

though of course other forms of dependence are possible.
Equations (1.4) and (1.5) imply that when x = 0 the mean failure time is infinite,

but it decreases to zero as stress x increases. Expression (1.4) represents the random
component of the model, for a given value of θ , and (1.5) the systematic component,
which determines how mean failure time θ depends on x . �

In Examples 1.1 and 1.2 the response is continuous, and there is a single explanatory
variable. But data with a discrete response ormore than one explanatory variable often
arise in practice.

Example 1.3 (Challenger data) The space shuttle Challenger exploded shortly
after its launch on 28 January 1986, with a loss of seven lives. The subsequent US
Presidential Commission concluded that the accident was caused by leakage of gas
from one of the fuel-tanks. Rubber insulating rings, so-called ‘O-rings’, were not
pliable enough after the overnight low temperature of 31◦F, and did not plug the joint
between the fuel in the tanks and the intense heat outside.
There are two types of joint, nozzle-joints and field-joints, each containing a pri-

mary O-ring and a secondary O-ring, together with putty that insulates both rings
from the propellant gas. Table 1.3 gives the number of primary rings, r , out of the
total m = 6 field-joints, that had experienced ‘thermal distress’ on previous flights.
Thermal distress occurs when excessive heat pits the ring — ‘erosion’ — or when
gases rush past the ring —- ‘blowby’. Blowby can occur in the short gap after igni-
tion before an O-ring seals. It can also occur if the ring seals and then fails, perhaps
because it has been eroded by the hot gas. Bench tests had suggested that one cause
of blowby was that the O-rings lost their resilience at low temperatures. It was also
suspected that pressure tests conducted before each launch holed the putty, making
erosion of the rings more likely.
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1 · Introduction 7

Table 1.3 O-ring
thermal distress data. r is
the number of field-joint
O-rings showing thermal
distress out of 6, for a
launch at the given
temperature (◦F) and
pressure (pounds per
square inch) (Dalal et al.,
1989).

Number of O-rings with Temperature (◦F) Pressure (psi)
Flight Date thermal distress, r x1 x2

1 21/4/81 0 66 50
2 12/11/81 1 70 50
3 22/3/82 0 69 50
5 11/11/82 0 68 50
6 4/4/83 0 67 50
7 18/6/83 0 72 50
8 30/8/83 0 73 100
9 28/11/83 0 70 100
41-B 3/2/84 1 57 200
41-C 6/4/84 1 63 200
41-D 30/8/84 1 70 200
41-G 5/10/84 0 78 200
51-A 8/11/84 0 67 200
51-C 24/1/85 2 53 200
51-D 12/4/85 0 67 200
51-B 29/4/85 0 75 200
51-G 17/6/85 0 70 200
51-F 29/7/85 0 81 200
51-I 27/8/85 0 76 200
51-J 3/10/85 0 79 200
61-A 30/10/85 2 75 200
61-B 26/11/86 0 76 200
61-C 21/1/86 1 58 200

61-I 28/1/86 — 31 200
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thermal distress data. The
left panel shows the
proportion of incidents as
a function of joint
temperature, and the right
panel shows the
corresponding plot against
pressure. The x-values
have been jittered to avoid
overplotting multiple
points. The solid lines
show the fitted proportions
of failures under a model
described in Chapter 4.

Table 1.3 shows the temperatures x1 and test pressures x2 associated with thermal
distress of the O-rings for flights before the disaster. The pattern becomes clearer
when the proportion of failures, r/m, is plotted against temperature and pressure in
Figure 1.3. As temperature decreases, r/m appears to increase. There is less pattern
in the corresponding plot for pressure.
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8 1 · Introduction

Table 1.4 Lung cancer
deaths in British male
physicians (Frome, 1983).
The table gives man-years
at risk/number of cases of
lung cancer,
cross-classified by years
of smoking, taken to be
age minus 20 years, and
number of cigarettes
smoked per day.

Years of
Daily cigarette consumption d

smoking t Nonsmokers 1–9 10–14 15–19 20–24 25–34 35+

15–19 10366/1 3121 3577 4317 5683 3042 670
20–24 8162 2937 3286/1 4214 6385/1 4050/1 1166
25–29 5969 2288 2546/1 3185 5483/1 4290/4 1482
30–34 4496 2015 2219/2 2560/4 4687/6 4268/9 1580/4
35–39 3512 1648/1 1826 1893 3646/5 3529/9 1336/6
40–44 2201 1310/2 1386/1 1334/2 2411/12 2424/11 924/10
45–49 1421 927 988/2 849/2 1567/9 1409/10 556/7
50–54 1121 710/3 684/4 470/2 857/7 663/5 255/4
55–59 826/2 606 449/3 280/5 416/7 284/3 104/1

For these data, the response variable takes one of the values 0, 1, . . . , 6, with fairly
strong dependence on temperature and possibly weaker dependence on pressure.
If we assume that at a given temperature and pressure, each of the six rings fails
independentlywith equal probability,we can treat the number of failures R as binomial
with denominator m and probability π ,

Pr(R = r ) = m!

r !(m − r )!
π r (1− π )m−r , r = 0, 1, . . . ,m, 0 < π < 1. (1.6)

One possible relation between temperature x1, pressure x2, and the probability of
failure is π = β0 + β1x1 + β2x2, where the parameters β0, β1, and β2 must be derived
from the data. This has the drawback of predicting probabilities outside the range [0, 1]
for certain values of x1 and x2. It is more satisfactory to use a function such as

π = exp(β0 + β1x1 + β2x2)

1+ exp(β0 + β1x1 + β2x2)
,

so 0 < π < 1 wherever β0 + β1x1 + β2x2 roams in the real line. It turns out that the
function eu/(1+ eu), the logistic distribution function, has an elegant connection to
the binomial density, but any other continuous distribution function with domain the
real line might be used.
The night before the Challenger was launched, there was a lengthy discussion

about how the O-rings might behave at the low predicted launch temperature. One
approach, which was not taken, would have been to try and predict howmany O-rings
might fail based on an estimated relationship between temperature and pressure. The
lines in Figure 1.3 represent the estimated dependence of failure probability on x1
and x2, and show a high probability of failure at the actual launch temperature. When
this is used as input to a probability model of how failures occur, the probability of
catastrophic failure for a launch at 31◦F is estimated to be as high as 0.16. To obtain
this estimate involves extrapolation outside the available data, but there would have
been little alternative in the circumstances of the launch. �

Example 1.4 (Lung cancer data) Table 1.4 shows data on the lung cancer mortality
of cigarette smokers among British male physicians. The table shows the man-years
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Figure 1.4 Lung cancer
deaths in British male
physicians. The figure
shows the rate of deaths
per 1000 man-years at
risk, for each of three
levels of daily cigarette
consumption.

at risk and the number of cases with lung cancer, cross-classified by the number of
years of smoking, taken to be age minus twenty years, and the number of cigarettes
smoked daily. The man-years at risk in each category is the total period for which the
individuals in that category were at risk of death.
As the eye moves from top left to the bottom right of the table, the figures suggest

that death rate increases with increased total cigarette consumption. This is confirmed
by Figure 1.4, which shows the death rate per 100,000 man-years at risk, grouped by
three levels of cigarette consumption. Data for the first two groups show that death
rate for smokers increases with cigarette consumption and with years of smoking.
The only nonsmoker deaths are one in the age-group 35–39 and two in the age-group
75–79.
In this problem the aspect of primary interest is how death rate depends on cigarette

consumption and smoking, and we treat the number of deaths in each category as the
response. To build a model, we suppose that the death rate for those smoking d
cigarettes per day after t years of smoking is λ(d, t) deaths per man-year. Thus we
may imagine deaths occurring at random in the total T man-years at risk in that
category, at rate λ(d, t). If deaths are independent point events in a continuum of
length T , the number of deaths, Y , will have approximately a Poisson density with
mean Tλ(d, t),

Pr(Y = y) = {Tλ(d, t)}y
y!

exp{−Tλ(d, t)}, y = 0, 1, 2, . . . . (1.7)

One possible form for the mean deaths per man-year is

λ(d, t) = β0t
β1

(
1+ β2d

β3
)
, (1.8)

based on a deterministic argument and used in animal cancer mortality studies. In
(1.8) there are four unknown parameters, and power-law dependence of death rate on
exposure duration, t , and cigarette consumption, d. We expect that all the parameters
βr are positive. The background death-rate in the absence of smoking is given byβ0tβ1 ,
the death-rate for nonsmokers. This represents the overall effect of other causes of
lung cancer.
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10 1 · Introduction

Expressions (1.7) and (1.8) give the randomand systematic components for a simple
model for the data, based on a blend of stochastic and deterministic arguments. An
increasingly important development in statistics is the use of very complex models
for real-world phenomena. Stochastic processes often provide the blocks with which
such models are built. �

There is an important difference between Example 1.4 and the previous examples.
In Example 1.1, Darwin could decide which plants to cross and where to plant them,
in Example 1.2 the springs could be allocated to different stresses by the experimenter,
and in Example 1.3 the test pressure for field joints was determined by engineers. The
engineerswould have no control over the temperature at the proposed time of a launch,
but they could decide whether or not to launch at a given temperature. In each case,
the allocation of treatments could in principle be controlled, albeit to different extents.
Such situations, called controlled experiments, often involve a random allocation of
treatments— type of fertilization, level of stress or test pressure— to units — plants,
springs, or flights. Strong conclusions can in principle be drawn when randomization
is used— though it played no part in Examples 1.1 or 1.3, and we do not know about
Example 1.2.
In Example 1.4, however, a new problem rears its head. There is no question of

allocating a level of cigarette consumption over a given period to individuals — the
practical difficulties would be insuperable, quite apart from ethical considerations. In
common with many other epidemiological, medical, and environmental studies, the
data are observational, and this limits what conclusions may be drawn. It might be
postulated that propensities to smoking and to lung cancer were genetically related,
causing the apparent dependence in Table 1.4. Then for an individual to stop smoking
would not reduce their chance of contracting lung cancer. In such cases data of
different types from different sources must be gathered and their messages carefully
collated and interpreted in order to put together an unambiguous story.
Despite differences in interpretation, the use of probability models to summarize

variability and express uncertainty is the basis of each example. It is the subject of
this book.

Outline

The idea of treating data as outcomes of random variables has implications for how
they should be treated. For example, graphical and numerical summaries of the ob-
servations will show variation, and it is important to understand its consequences.
Chapter 2 is devoted to this. It deals with basic ideas such as parameters, statistics,
and sampling variation, simple graphs and other summary quantities, and then turns
to notions of convergence, which are essential for understanding variability in large
samples and generating approximations for small ones. Many statistics are based on
quantities such as the largest item in a sample, and order statistics are also discussed.
The chapter finishes with an account of moments and cumulants.
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