Probabilistic Risk Analysis: Foundations and Methods
Probabilistic Risk Analysis: Foundations and Methods

Tim Bedford
Delft University of Technology
and
University of Strathclyde

Roger Cooke
Delft University of Technology
Contents

Illustrations	page xiii
Tables | xvi
Preface | xix

Part I: Introduction

1 **Probabilistic risk analysis** | 1

1.1 Historical overview
- 1.1.1 The aerospace sector | 4
- 1.1.2 The nuclear sector | 5
- 1.1.3 The chemical process sector | 8
- 1.1.4 The less recent past | 9

1.2 What is the definition of risk?
- 1 2 | 9

1.3 Scope of probabilistic risk analyses
- 1 3 | 11

1.4 Risk analysis resources
- 1 4 | 12
- 1.4.1 Important journals | 12
- 1.4.2 Handbooks | 12
- 1.4.3 Professional organizations | 12
- 1.4.4 Internet | 13

Part II: Theoretical issues and background

2 **What is uncertainty?** | 15

2.1 The meaning of meaning
- 2 1 | 17

2.2 The meaning of uncertainty
- 2 2 | 19

2.3 Probability axioms
- 2 3 | 21
- 2.3.1 Interpretations | 22

2.4 Savage’s theory of rational decision
- 2 4 | 24
- 2.4.1 Savage’s axioms | 26
- 2.4.2 Quantitative probability | 28
Contents

2.4.3 Utility 28
2.4.4 Observation 28

2.5 Measurement of subjective probabilities 30
2.6 Different types of uncertainty 33
2.7 Uncertainty about probabilities 35

3 Probabilistic methods 39
3.1 Review of elementary probability theory 39
3.2 Random variables 41
 3.2.1 Moments 42
 3.2.2 Several random variables 43
 3.2.3 Correlations 44
 3.2.4 Failure rates 45
3.3 The exponential life distribution 47
 3.3.1 Constant test intervals 48
 3.3.2 Exponential failure and repair 50
3.4 The Poisson distribution 51
3.5 The gamma distribution 52
3.6 The beta distribution 53
3.7 The lognormal distribution 54
3.8 Stochastic processes 55
3.9 Approximating distributions 58

4 Statistical inference 61
4.1 Foundations 61
4.2 Bayesian inference 63
 4.2.1 Bayes’ Theorem 64
 4.2.2 An example with the exponential distribution 67
 4.2.3 Conjugate distributions 69
 4.2.4 First find your prior 70
 4.2.5 Point estimators from the parameter distribution 74
 4.2.6 Asymptotic behaviour of the posterior 74
4.3 Classical statistical inference 75
 4.3.1 Estimation of parameters 75
 4.3.2 Non-parametric estimation 77
 4.3.3 Confidence intervals 78
 4.3.4 Hypothesis testing 79

5 Weibull Analysis 83
5.1 Definitions 85
5.2 Graphical methods for parameter fitting 85
 5.2.1 Rank order methods 86
 5.2.2 Suspended or censored items 88
Contents

5.2.3 The Kaplan–Meier estimator 91
5.3 Maximum likelihood methods for parameter estimation 92
5.4 Bayesian estimation 94
5.5 Extreme value theory 94

Part III: System analysis and quantification 97
6 Fault and event trees 99
6.1 Fault and event trees 99
6.2 The aim of a fault-tree analysis 100
6.3 The definition of a system and of a top event 103
6.3.1 External boundaries 103
6.3.2 Internal boundaries 104
6.3.3 Temporal boundaries 104
6.4 What classes of faults can occur? 104
6.4.1 Active and passive components 105
6.4.2 Primary, secondary and command faults 105
6.4.3 Failure modes, effects and mechanisms 105
6.5 Symbols for fault trees 106
6.6 Fault tree construction 106
6.7 Examples 108
6.7.1 Reactor vessel 108
6.7.2 New Waterway barrier 109
6.8 Minimal path and cut sets for coherent systems 110
6.8.1 Cut sets 110
6.8.2 Path sets 112
6.9 Set theoretic description of cut and path sets 112
6.9.1 Boolean algebra 112
6.9.2 Cut set representation 114
6.9.3 Path set representation 115
6.9.4 Minimal cut set/path set duality 115
6.9.5 Parallel and series systems 117
6.10 Estimating the probability of the top event 117
6.10.1 Common cause 118
7 Fault trees – analysis 121
7.1 The MOCUS algorithm for finding minimal cut sets 121
7.1.1 Top down substitution 121
7.1.2 Bottom up substitution 122
7.1.3 Tree pruning 122
7.2 Binary decision diagrams and new algorithms 123
7.2.1 Prime implicants calculation 129
Contents

7.2.2 Minimal p-cuts ... 130
7.2.3 Probability calculations ... 132
7.2.4 Examples .. 132
7.2.5 The size of the BDD .. 134
7.3 Importance ... 135

8 Dependent failures .. 140
8.1 Introduction ... 140
8.2 Component failure data versus incident reporting 140
8.3 Preliminary analysis .. 141
8.4 Inter-system dependencies .. 143
8.5 Inter-component dependencies – common cause failure 143
8.6 The square root bounding model 143
8.7 The Marshall–Olkin model ... 143
8.8 The beta-factor model ... 146
8.8.1 Parameter estimation .. 147
8.9 The binomial failure rate model 148
8.10 The α-factor model ... 151
8.11 Other models .. 151

9 Reliability data bases .. 153
9.1 Introduction ... 153
9.2 Maintenance and failure taxonomies 156
9.2.1 Maintenance taxonomy ... 156
9.2.2 Failure taxonomy .. 157
9.2.3 Operating modes; failure causes; failure mechanisms
and failure modes .. 158
9.3 Data structure ... 160
9.3.1 Operations on data .. 161
9.4 Data analysis without competing risks 163
9.4.1 Demand related failures: non-degradable components 163
9.4.2 Demand related failures: degradable components 164
9.4.3 Time related failures; no competing risks 165
9.5 Competing risk concepts and methods 166
9.5.1 Subsurvivor functions and identifiability 168
9.5.2 Colored Poisson representation of competing risks 170
9.6 Competing risk models .. 172
9.6.1 Independent exponential competing risk 172
9.6.2 Random clipping .. 175
9.6.3 Random signs .. 175
9.6.4 Conditionally independent competing risks 177
9.6.5 Time window censoring .. 179
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.7</td>
<td>Uncertainty</td>
<td>179</td>
</tr>
<tr>
<td>9.7.1</td>
<td>Uncertainty due to non-identifiability: bounds in the absence of sampling fluctuations</td>
<td>180</td>
</tr>
<tr>
<td>9.7.2</td>
<td>Accounting for sampling fluctuations</td>
<td>182</td>
</tr>
<tr>
<td>9.7.3</td>
<td>Sampling fluctuations of Peterson bounds</td>
<td>182</td>
</tr>
<tr>
<td>9.8</td>
<td>Examples of dependent competing risk models</td>
<td>184</td>
</tr>
<tr>
<td>9.8.1</td>
<td>Failure effect</td>
<td>185</td>
</tr>
<tr>
<td>9.8.2</td>
<td>Action taken</td>
<td>186</td>
</tr>
<tr>
<td>9.8.3</td>
<td>Method of detection</td>
<td>188</td>
</tr>
<tr>
<td>9.8.4</td>
<td>Subcomponent</td>
<td>189</td>
</tr>
<tr>
<td>9.8.5</td>
<td>Conclusions</td>
<td>189</td>
</tr>
<tr>
<td>10</td>
<td>Expert opinion</td>
<td>191</td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>191</td>
</tr>
<tr>
<td>10.2</td>
<td>Generic issues in the use of expert opinion</td>
<td>192</td>
</tr>
<tr>
<td>10.3</td>
<td>Bayesian combinations of expert assessments</td>
<td>192</td>
</tr>
<tr>
<td>10.4</td>
<td>Non-Bayesian combinations of expert distributions</td>
<td>194</td>
</tr>
<tr>
<td>10.5</td>
<td>Linear opinion pools</td>
<td>199</td>
</tr>
<tr>
<td>10.6</td>
<td>Performance based weighting – the classical model</td>
<td>199</td>
</tr>
<tr>
<td>10.6.1</td>
<td>Calibration</td>
<td>200</td>
</tr>
<tr>
<td>10.6.2</td>
<td>Information</td>
<td>202</td>
</tr>
<tr>
<td>10.6.3</td>
<td>Determining the weights</td>
<td>203</td>
</tr>
<tr>
<td>10.6.4</td>
<td>Approximation of expert distributions</td>
<td>206</td>
</tr>
<tr>
<td>10.7</td>
<td>Case study – uncertainty in dispersion modeling</td>
<td>208</td>
</tr>
<tr>
<td>11</td>
<td>Human reliability</td>
<td>218</td>
</tr>
<tr>
<td>11.1</td>
<td>Introduction</td>
<td>218</td>
</tr>
<tr>
<td>11.2</td>
<td>Generic aspects of a human reliability analysis</td>
<td>220</td>
</tr>
<tr>
<td>11.2.1</td>
<td>Human error probabilities</td>
<td>220</td>
</tr>
<tr>
<td>11.2.2</td>
<td>Task analysis</td>
<td>220</td>
</tr>
<tr>
<td>11.2.3</td>
<td>Performance and error taxonomy</td>
<td>221</td>
</tr>
<tr>
<td>11.2.4</td>
<td>Performance shaping factors</td>
<td>223</td>
</tr>
<tr>
<td>11.3</td>
<td>THERP – technique for human error rate prediction</td>
<td>224</td>
</tr>
<tr>
<td>11.3.1</td>
<td>Human error event trees</td>
<td>226</td>
</tr>
<tr>
<td>11.3.2</td>
<td>Performance shaping factors</td>
<td>227</td>
</tr>
<tr>
<td>11.3.3</td>
<td>Dependence</td>
<td>227</td>
</tr>
<tr>
<td>11.3.4</td>
<td>Time dependence and recovery</td>
<td>228</td>
</tr>
<tr>
<td>11.3.5</td>
<td>Distributions for HEPs</td>
<td>228</td>
</tr>
<tr>
<td>11.4</td>
<td>The Success Likelihood Index Methodology</td>
<td>230</td>
</tr>
<tr>
<td>11.5</td>
<td>Time reliability correlations</td>
<td>232</td>
</tr>
<tr>
<td>11.6</td>
<td>Absolute Probability Judgement</td>
<td>235</td>
</tr>
<tr>
<td>11.7</td>
<td>Influence diagrams</td>
<td>236</td>
</tr>
<tr>
<td>11.8</td>
<td>Conclusions</td>
<td>238</td>
</tr>
</tbody>
</table>
12 Software reliability

12.1 Qualitative assessment – ways to find errors
12.1.1 FMECA of software-based systems 240
12.1.2 Formal design and analysis methods 241
12.1.3 Software sneak analysis 241
12.1.4 Software testing 241
12.1.5 Error reporting 242

12.2 Software quality assurance
12.2.1 Software safety life-cycles 242
12.2.2 Development phases and reliability techniques 243
12.2.3 Software quality 245
12.2.4 Software quality characteristics 245
12.2.5 Software quality metrics 245

12.3 Software reliability prediction
12.3.1 Error seeding 247
12.3.2 The Jelinski–Moranda model 247
12.3.3 Littlewood’s model 248
12.3.4 The Littlewood–Verral model 249
12.3.5 The Goel–Okumoto model 250

12.4 Calibration and weighting
12.4.1 Calibration 251
12.4.2 Weighted mixtures of predictors 253

12.5 Integration errors
12.6 Example

Part IV: Uncertainty modeling and risk measurement

13 Decision theory

13.1 Preferences over actions 261
13.2 Decision tree example 262
13.3 The value of information 264
13.3.1 When do observations help? 267
13.4 Utility 268

13.5 Multi-attribute decision theory and value models 269
13.5.1 Attribute hierarchies 270
13.5.2 The weighting factors model 271
13.5.3 Mutual preferential independence 271
13.5.4 Conditional preferential independence 274
13.5.5 Multi-attribute utility theory 277
13.5.6 When do we model the risk attitude? 280
13.5.7 Trade-offs through time 281
Contents

13.6 Other popular models 281
 13.6.1 Cost–benefit analysis 281
 13.6.2 The analytic hierarchy process 283
13.7 Conclusions 283

14 Influence diagrams and belief nets 286
 14.1 Belief networks 286
 14.2 Conditional independence 288
 14.3 Directed acyclic graphs 289
 14.4 Construction of influence diagrams 290
 14.4.1 Model verification 292
 14.5 Operations on influence diagrams 294
 14.5.1 Arrow reversal 294
 14.5.2 Chance node removal 294
 14.6 Evaluation of influence diagrams 295
 14.7 The relation with decision trees 295
 14.8 An example of a Bayesian net application 296

15 Project risk management 299
 15.1 Risk management methods 300
 15.1.1 Identification of uncertainties 300
 15.1.2 Quantification of uncertainties 302
 15.1.3 Calculation of project risk 302
 15.2 The Critical Path Method (CPM) 302
 15.3 Expert judgement for quantifying uncertainties 304
 15.4 Building in correlations 305
 15.5 Simulation of completion times 305
 15.6 Value of money 306
 15.7 Case study 307

16 Probabilistic inversion techniques for uncertainty analysis 316
 16.1 Elicitation variables and target variables 318
 16.2 Mathematical formulation of probabilistic inversion 319
 16.3 PREJUDICE 320
 16.3.1 Heuristics 320
 16.3.2 Solving for minimum information 321
 16.4 Infeasibility problems and PARFUM 322
 16.5 Example 323

17 Uncertainty analysis 326
 17.1 Introduction 326
 17.1.1 Mathematical formulation of uncertainty analysis 326
 17.2 Monte Carlo simulation 327
17.2.1 Univariate distributions 327
17.2.2 Multivariate distributions 328
17.2.3 Transforms of joint normals 329
17.2.4 Rank correlation trees 330
17.2.5 Vines 334
17.3 Examples: uncertainty analysis for system failure 339
17.3.1 The reactor example 339
17.3.2 Series and parallel systems 341
17.3.3 Dispersion model 342
17.5 Appendix: bivariate minimally informative distributions 346
17.5.1 Minimal information distributions 346
18 Risk measurement and regulation 350
18.1 Single statistics representing risk 350
18.1.1 Deaths per million 350
18.1.2 Loss of life expectancy 351
18.1.3 Delta yearly probability of death 353
18.1.4 Activity specific hourly mortality rate 354
18.1.5 Death per unit activity 355
18.2 Frequency vs consequence lines 355
18.2.1 Group risk comparisons; cedf method 356
18.2.2 Total risk 359
18.2.3 Expected disutility 360
18.2.4 Uncertainty about the fC curve 361
18.2.5 Benefits 362
18.3 Risk regulation 362
18.3.1 ALARP 362
18.3.2 The value of human life 363
18.3.3 Limits of risk regulation 365
18.4 Perceiving and accepting risks 365
18.4.1 Risk perception 367
18.4.2 Acceptability of risks 368
18.5 Beyond risk regulation: compensation, trading and ethics 369

Bibliography 373
Index 390
Illustrations

1.1 Risk curve 10
3.1 A schematic representation of a bathtub curve 46
3.2 Availability of a component under constant test intervals 49
3.3 Exponential failure and repair 50
3.4 A lognormal density 54
3.5 A lognormal failure rate 55
4.1 65
4.2 Prior and posterior density and distribution functions 68
4.3 Prior and posterior density and distribution functions (100 observations) 70
5.1 Densities for the Weibull distribution 85
5.2 A Weibull plot of the data in Table 5.4 89
5.3 Revised Weibull plot for Table 5.6 91
6.1 An event tree 100
6.2 The Cassini event tree 101
6.3 Security system 102
6.4 AND and OR gates 103
6.5 Common gates and states 107
6.6 Schematic diagram for the reactor protection system 108
6.7 Fault tree for the reactor protection system 109
6.8 Schematic diagram for the New Waterway water-level measurement system 110
6.9 Fault tree for the New Waterway water-level measurement system 111
6.10 Cut set fault tree representation for the reactor protection example 114
6.11 Path set fault tree representation for the reactor protection example 116
6.12 Dual tree for the reactor protection example 116
6.13 Very simple fault tree 119
7.1 Cut set calculation for the reactor protection system 122
7.2 A power system 124
7.3 The simple coherent fault tree from Example 7.2 125
7.4 The simple non-coherent fault tree from Example 7.3 126
7.5 A binary decision tree for Example 7.2 127
<table>
<thead>
<tr>
<th>Illustrations</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6 Application of the simplification rules</td>
<td>128</td>
</tr>
<tr>
<td>7.7 BDD for Example 7.3</td>
<td>128</td>
</tr>
<tr>
<td>7.8 BDD representation for the reactor protection example</td>
<td>133</td>
</tr>
<tr>
<td>7.9 BDD representation for the electrical power system example</td>
<td>133</td>
</tr>
<tr>
<td>7.10 Probability calculations for the electrical power system example</td>
<td>134</td>
</tr>
<tr>
<td>7.11 Fault tree example</td>
<td>137</td>
</tr>
<tr>
<td>8.1 Auxiliary Feedwater System</td>
<td>141</td>
</tr>
<tr>
<td>9.1 Maintenance and failure in time</td>
<td>159</td>
</tr>
<tr>
<td>9.2 Hierarchical categories</td>
<td>160</td>
</tr>
<tr>
<td>9.3 Superposed and pooled time histories</td>
<td>163</td>
</tr>
<tr>
<td>9.4 Calendar time picture of censored data</td>
<td>170</td>
</tr>
<tr>
<td>9.5 Censored failure data from four plants</td>
<td>173</td>
</tr>
<tr>
<td>9.6 Data fields for coloring</td>
<td>185</td>
</tr>
<tr>
<td>9.7 Coloring of ‘failure effect’</td>
<td>186</td>
</tr>
<tr>
<td>9.8 Coloring of ‘action taken’</td>
<td>187</td>
</tr>
<tr>
<td>9.9 Coloring of ‘method of detection’</td>
<td>188</td>
</tr>
<tr>
<td>9.10 Coloring of ‘subcomponent’</td>
<td>189</td>
</tr>
<tr>
<td>10.1 The expert’s interpolated density</td>
<td>203</td>
</tr>
<tr>
<td>10.2 Expert ranking</td>
<td>204</td>
</tr>
<tr>
<td>10.3 Interpolation of expert quantiles</td>
<td>206</td>
</tr>
<tr>
<td>10.4 Combination of expert distributions</td>
<td>207</td>
</tr>
<tr>
<td>10.5 Range graphs</td>
<td>214</td>
</tr>
<tr>
<td>10.6 Range graphs</td>
<td>215</td>
</tr>
<tr>
<td>11.1 Classification of expected cognitive performance</td>
<td>222</td>
</tr>
<tr>
<td>11.2 The dynamics of GEMS</td>
<td>223</td>
</tr>
<tr>
<td>11.3 Example human error event tree</td>
<td>226</td>
</tr>
<tr>
<td>11.4 Example human time reliability correlation</td>
<td>229</td>
</tr>
<tr>
<td>11.5 Hypothetical lognormal density of HEPs</td>
<td>230</td>
</tr>
<tr>
<td>11.6 An ID for human error probabilities</td>
<td>236</td>
</tr>
<tr>
<td>12.1 Classification of software reliability models</td>
<td>244</td>
</tr>
<tr>
<td>12.2 A u-plot</td>
<td>252</td>
</tr>
<tr>
<td>12.3 Cumulative times until failure</td>
<td>254</td>
</tr>
<tr>
<td>12.4 Expected number of failures as function of time using LV model</td>
<td>255</td>
</tr>
<tr>
<td>12.5 The u-plot</td>
<td>256</td>
</tr>
<tr>
<td>13.1 The decision tree for the research project</td>
<td>263</td>
</tr>
<tr>
<td>13.2 The decision tree for the extended research proposal</td>
<td>265</td>
</tr>
<tr>
<td>13.3 Simple attribute hierarchy</td>
<td>270</td>
</tr>
<tr>
<td>13.4 The construction of a marginal value function</td>
<td>273</td>
</tr>
<tr>
<td>13.5 Indifference curves for cost and delay</td>
<td>276</td>
</tr>
<tr>
<td>13.6 Indifference curves for cost and performance given delay = 5</td>
<td>276</td>
</tr>
<tr>
<td>13.7 The trade-off between cost and performance</td>
<td>278</td>
</tr>
<tr>
<td>14.1 A simple belief net</td>
<td>286</td>
</tr>
<tr>
<td>14.2 Alarm influence diagram</td>
<td>292</td>
</tr>
<tr>
<td>14.3 A Bayesian belief net and the corresponding moral graph</td>
<td>294</td>
</tr>
<tr>
<td>14.4 An influence diagram for fire risk</td>
<td>298</td>
</tr>
<tr>
<td>15.1 A simple network</td>
<td>303</td>
</tr>
</tbody>
</table>
Illustrations

15.2 Determining the critical path 303
15.3 Form of the loss function for overspending 306
15.4 Program standard offer 308
15.5 Program alternative offer 309
15.6 Triangular distribution 312
15.7 Distribution of project duration 313
15.8 Distribution of project duration, with new option 314
16.1 Box model for soil migration 319
16.2 Marginal distributions for the target variables 324
17.1 The diagonal band distribution with parameter α 331
17.2 A dependence tree 333
17.3 Partial correlation vine 338
17.4 Rank correlation tree for power lines, Case 2 339
17.5 Rank correlation tree for power lines, Case 3 339
17.6 Distributions for powerline system failure probability 340
17.7 Distribution for series system lifetime 341
17.8 Mean series system lifetime, depending on rank correlation 341
17.9 Mean parallel system lifetime, depending on rank correlation 342
17.10 Unconditional cobweb plot 343
17.11 Conditional cobweb plot: high concentration at 0.5 km downwind 344
17.12 Conditional cobweb plot: mid-range concentration at 0.5 km downwind 345
17.13 Conditional cobweb plot: low concentration at 0.5 km downwind 346
18.1 Frequency consequence lines 356
18.2 The Dutch group risk criterion 357
18.3 Unacceptable risks 358
18.4 Equally risky activities 360
18.5 Changes in numbers of deaths of motor cyclists in different US states 366
Tables

5.1 Swedish nuclear power plant data failure fields 84
5.2 A small mortality table for failure data 87
5.3 Median ranks 88
5.4 A small mortality table with median rank estimates 88
5.5 Failure times and suspensions 89
5.6 Revised median rank estimates, with suspensions 90
5.7 Kaplan-Meier estimates 92
5.8 Extreme value distributions 96
6.1 Laws of Boolean algebra 113
7.1 Truth table for Example 7.2 125
7.2 Truth table for Example 7.3 126
7.3 The p-cut calculation for the electrical power system 135
7.4 Comparison of fault tree size and BDD size for various test cases 135
7.5 TV importance of basic events 137
7.6 Approximate conditional probability of basic events given failure of Component 2 and T. 138
8.1 Generic causes of dependent component failures 144
8.2 Some β-factors 148
9.1 Maintenance jobs and schedules 157
9.2 Maintenance and failure type 158
9.3 Component socket time histories, 314 pressure relief valves 160
10.1 Expert 1 data 212
10.2 Expert 3 data 212
10.3 Expert 4 data 213
10.4 Expert 5 data 213
10.5 Expert 8 data 214
10.6 Global weights for the five experts 216
10.7 Equal weights for the five experts 216
11.1 Some generic HEPs used in WASH-1400 219
11.2 Stages in a human reliability analysis 221
11.3 Failure modes for the three performance levels 224
Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.4</td>
<td>HEP modification factors, Table 20-16 from [Swain and Guttmann, 1983]</td>
<td>227</td>
</tr>
<tr>
<td>11.5</td>
<td>Levels of dependency</td>
<td>228</td>
</tr>
<tr>
<td>11.6</td>
<td>Typical values of the distribution</td>
<td>235</td>
</tr>
<tr>
<td>11.7</td>
<td>Marginal and conditional probabilities for the ID in Figure 11.6</td>
<td>237</td>
</tr>
<tr>
<td>14.1</td>
<td>Conditional probability tables</td>
<td>297</td>
</tr>
<tr>
<td>15.1</td>
<td>An example Project Uncertainty Matrix</td>
<td>301</td>
</tr>
<tr>
<td>15.2</td>
<td>Criticality indices for activities</td>
<td>313</td>
</tr>
<tr>
<td>16.1</td>
<td>Quantile information for elicitation variables at various downwind distances</td>
<td>323</td>
</tr>
<tr>
<td>16.2</td>
<td>Product moment correlation matrix for target variables</td>
<td>325</td>
</tr>
<tr>
<td>16.3</td>
<td>Rank correlation matrix for target variables</td>
<td>325</td>
</tr>
<tr>
<td>17.1</td>
<td>Moments and quantiles for uncertainty distribution</td>
<td>340</td>
</tr>
<tr>
<td>18.1</td>
<td>Annual risk of death in the United States</td>
<td>352</td>
</tr>
<tr>
<td>18.2</td>
<td>Loss of life expectancy</td>
<td>352</td>
</tr>
<tr>
<td>18.3</td>
<td>Hourly specific mortality rates</td>
<td>354</td>
</tr>
<tr>
<td>18.4</td>
<td>Deaths per 10^9 km traveled</td>
<td>355</td>
</tr>
<tr>
<td>18.5</td>
<td>Risk goals for various technologies</td>
<td>363</td>
</tr>
<tr>
<td>18.6</td>
<td>Median costs of life-saving measures per sector</td>
<td>364</td>
</tr>
</tbody>
</table>
Preface

We have written this book for numerate readers who have taken a first university course in probability and statistics, and who are interested in mastering the conceptual and mathematical foundations of probabilistic risk analysis. It has been developed from course notes used at Delft University of Technology. An MSc course on risk analysis is given there to mathematicians and students from various engineering faculties. A selection of topics, depending on the specific interests of the students, is made from the chapters in the book. The mathematical background required varies from topic to topic, but all relevant probability and statistics are contained in Chapters 3 and 4.

Probabilistic risk analysis differs from other areas of applied science because it attempts to model events that (almost) never occur. When such an event does occur then the underlying systems and organizations are often changed so that the event cannot occur in the same way again. Because of this, the probabilistic risk analyst must have a strong conceptual and mathematical background.

The first chapter surveys the history of risk analysis applications. Chapter 2 explains why probability is used to model uncertainty and why we adopt a subjective definition of probability in spite of its limitations. Chapters 3 and 4 provide the technical background in probability and statistics that is used in the rest of the book. The remaining chapters are more-or-less technically independent of each other, except that Chapter 7 must follow Chapter 6, and 14 should follow 13. The final chapter gives a broad overview of risk measurement problems and looks into the future of risk analysis.

Almost all the chapters are concluded with exercises. The answers to these exercises are not given in the book, but bona fide teachers who are using the book in conjunction with their courses may contact David Tranah (dtranah@cambridge.org) and ask for a PDF file with the solutions to the problems.
Preface

Acknowledgements

A large number of people, including many students of our course ‘Risk Analysis’, have given us comments on this book. Special thanks are due to Frank Phillipson, Mart Janssen, Frank Rabouw, Linda van Merrienboer, Eeke Mast, Gilbert Pothoff, Erwin van Iperen, Lucie Aarts, Mike Frank, Antoine Rauzy, Christian Pressyl, Joe Fragola, Floor Koornneef and co-authors of various chapters, Bernd Kraan, Jan Norstrøm and Lonneke Holierhoek.

Special thanks go of course to our families and friends for putting up with us during the preparation of this manuscript.