142 Harmonic Maps between Riemannian Polyhedra
J. Eells
Cambridge/Warwick

B. Fuglede
Copenhagen

With a preface by M. Gromov

Harmonic Maps between
Riemannian Polyhedra
Contents

Gromov's Preface ix
Authors' Preface xi

1. Introduction 1
 The smooth framework 1
 Harmonic and Dirichlet spaces 4
 Riemannian polyhedra 5
 Harmonic functions on X 6
 Geometric examples 7
 Maps between polyhedra 8
 Harmonic maps 11
 Harmonic morphisms 12
 Singular frameworks 12

Part I. Domains, targets, examples 14

2. Harmonic spaces, Dirichlet spaces, and geodesic spaces 15
 Harmonic spaces 15
 Dirichlet structures on a space 20
 Geodesic spaces 24

3. Examples of domains and targets 30
 Example 3.1. Riemannian manifolds 30
 Example 3.2. Almost Riemannian spaces 31
 Example 3.3. Finsler structure on a manifold 31
 Example 3.4. Metric associated to a holomorphic quadratic differential 33
 Example 3.5. Lie algebras of vector fields on a manifold 33
 Example 3.6. Riemannian Lipschitz manifolds 37
 Example 3.7. The infinite dimensional torus T^∞ 39

4. Riemannian polyhedra 41
 Lip continuous map. Lip homeomorphism 41
 Simplicial complex 42
 Polyhedron 44
 Circuit 45
Contents

Lip polyhedron 46
Riemannian polyhedron 47
The intrinsic distance d_X 51
Local structure in terms of cubes 57
Uniform estimate of ball volumes 60

Part II. Potential theory on polyhedra 62
5. The Sobolev space $W^{1,2}(X)$. Weakly harmonic functions 63
 The Sobolev space $W^{1,2}(X)$ 63
 A Poincaré inequality 68
 Weakly harmonic and weakly sub/superharmonic functions 72
 Unique continuation of harmonic functions 77

6. Harnack inequality and Hölder continuity for weakly
 harmonic functions 79
 Proof of Theorem 6.1 in the locally bounded case 79
 Completion of the proof of Theorem 6.1 88
 Hölder continuity 91

7. Potential theory on Riemannian polyhedra 99
 Harmonic space structure 99
 The Dirichlet space $L^{1,2}_0(X)$ 104
 The Green kernel 108
 Quasitopology and fine topology 125
 Sobolev functions on quasiregular sets 127
 Subharmonicity of convex functions 129

8. Examples of Riemannian polyhedra and related spaces 130
 Example 8.1. 1-dimensional Riemannian polyhedra 130
 Example 8.2. The need for dimensional homogeneity 131
 Example 8.3. The need for local chainability 132
 Example 8.4. Manifolds as polyhedra 132
 Example 8.5. A kind of connected sum of polyhedra 132
 Example 8.6. Riemannian joins of Riemannian manifolds 133
 Example 8.7. Riemannian orbit spaces 134
 Example 8.8. Conical singular Riemannian spaces 134
 Example 8.9. Normal analytic spaces with singularities 135
 Example 8.10. The Kobayashi distance 138
 Example 8.11. Riemannian branched coverings 139
 Example 8.12. The quotient M/K 142
 Example 8.13. Riemannian orbifolds 146
Contents

Part III. Maps between polyhedra 150

9. Energy of maps 151
 Energy density and energy 151
 Energy of maps into Riemannian manifolds 162
 Energy of maps into Riemannian polyhedra 173
 The volume of a map 176

10. Hölder continuity of energy minimizers 178
 The case of a target of nonpositive curvature 179
 Proof of Theorem 10.1 189
 The case of a target of upper bounded curvature 192

11. Existence of energy minimizers 198
 The case of free homotopy 200
 The Dirichlet problem relative to a homotopy class 206
 The ordinary Dirichlet problem 208
 The case where the target is a Riemannian manifold 211
 The case of 2-dimensional manifold domains 211
 Questions and remarks 213

12. Harmonic maps. Totally geodesic maps 217
 A concept of harmonic map 217
 Weakly harmonic maps into a Riemannian manifold 221
 Hölder continuity revisited 230
 Totally geodesic maps 233
 Geodesics as harmonic maps 236
 Jensen’s inequality for maps 241
 Harmonic maps from a 1-dimensional Riemannian polyhedron 243

13. Harmonic morphisms 247
 Harmonic morphisms between harmonic spaces 247
 Harmonic morphisms between Riemannian polyhedra 249
 Harmonic morphisms into Riemannian manifolds 251

14. Appendix: Energy according to Korevaar-Schoen 259
 Subpartitioning Lemma 259
 Directional energies 261
 Trace maps 262

15. Appendix: Minimizers with small energy decay 264
 (By T. Serbinowski)
 Introduction and results 264
 Embedding Y into an NPC cone 265
 Hölder continuity of the minimizer 268
Contents

Proof of Theorem 15.1 273
Lipschitz continuity of the minimizer 275

Bibliography 277
Special symbols 291
Index 294
Gromov’s Preface

Harmony and Harmonicity

If you fall in love with harmonic functions your mathematician’s soul will never come to rest unless you comprehend the origin of their irresistible appeal and beauty. And if you are bent on spaces, manifolds and maps you start researching for the geometric habitat of harmonicity.

In 1964 Eells and Sampson found the promised land not limited to functions but encompassing harmonic maps between (almost) arbitrary Riemannian manifolds. Yet one’s greed for generality has not been quenched and the urge to extend harmonicity to rugged terrains of singular spaces could not be contained for long.

Here the story of this begins. There are two players in the harmonic mappings game: the source space X and the target Y. Suppose we are granted a harmonic structure on X, that is a distinguished space (or rather a sheaf) of \mathbb{R}-valued functions on X regarded as “harmonic”. Then one can, under suitable assumptions, define another space (sheaf) consisting of corresponding “subharmonic functions” on X. Similarly, one needs distinguished functions on Y: these should be thought of as “convex functions”. A map $f : X \to Y$ is declared “harmonic” if the pull-back of every “convex function” on Y is “subharmonic” on X.

Now a hard choice is to be made: how much of “Riemannian” is one willing to sacrifice for the sake of generality (singularity) and harmonicity? The authors decide in favour of “measurable Riemannian” for both X and Y, where X is a (rather general) topological polyhedron and Y is allowed an arbitrary local topology modified by the negative sign restriction on the curvature. In other words, the dimensions of X and Y are limited, for most part, to be finite, fractality (e.g. subellipticity) is not admitted and foliated structures are not allowed. By paying this price one arrives at a full fledged harmonic theory on X, extending Nash–De Giorgi–Moser, which then perfectly welds with the negative curvature on Y. It is some three hundred pages of smooth ride.

Misha Gromov
May 15, 2000
Authors’ Preface

During the past thirty-five years harmonic maps between smooth Riemannian manifolds have played a significant role in geometry and elliptic analysis. They provide an especially rich mixture of classical potential theory and the Riemannian geometry of maps. Relevant guidelines are described in [EL 1978, 1988], mostly without proof, but with full references.

About eight years ago it became apparent that the notion of harmonicity should be expanded to include maps between certain singular spaces. In particular, (a) for applications to rigidity Gromov (see [GS 1992]) has shown that Riemannian polyhedra, and more generally the geodesic spaces of Alexandrov and Busemann (Definition 2.7), are natural targets; (b) certain Riemannian polyhedra (e.g., normal complex analytic spaces) are natural domains for harmonic maps.

This monograph is a research essay on harmonic maps between admissible Riemannian polyhedra (definitions in Chapter 4), these being prototypes of the relevant singular spaces. While harmonic spaces (in the sense of Brelot) are natural domains for harmonic functions, we have not been able to study harmonic maps in that generality, not even when adding a suitable Dirichlet space structure to obtain a notion of energy. We have discovered, however, that admissible Riemannian polyhedra are both geodesic, harmonic and Dirichlet spaces, more precisely hypoelliptic Dirichlet spaces in the sense of Feyel and de La Pradelle [FP 1978]. These polyhedra illustrate clearly our main ideas, and provide a wealth of examples as well. Thus harmonic maps (especially when presented in their variational context, via the Dirichlet integral) between Riemannian polyhedra are our main object of study.

A particular novelty in our presentation is the use of the fine topology of H. Cartan (the weakest topology in which all subharmonic functions are continuous), and its intimate relation to quasitopological concepts (defined in terms of capacity). This leads among other things to the quasicontinuity of finite energy maps in the sense of Korevaar and Schoen [KS 1993] into geodesic spaces, also in our setting of maps with polyhedral domain.

In spite of their importance, we do not treat applications in detail, for
Authors’ Preface

that simply would take us too far afield. However, here are three such—the first having smooth Riemannian domains and singular targets, the second having singular domains and smooth Riemannian targets:

- \(p \)-adic super-rigidity for lattices of rank one in the isometry groups of the quaternionic hyperbolic space and the Cayley plane, [GS 1992] and [Co 1992].
- Representation of integral homology classes of a compact Riemannian manifold by harmonic maps of compact oriented normal circuits [E 1997]. The proof is based on the method in [EF 1991]—except for the case of 2-dimensional homology classes, which can be so represented, using [Cha 1988].
- Reduction methods, as in [ER 1993, Chapter IV]. The idea (Examples 12.2 and 13.5) is to obtain an equivariant harmonic map \(\psi : M \to N \) between smooth Riemannian manifolds, starting from a harmonic map \(\varphi : M/K \to N/L \) between orbit spaces, where \(K \) (resp., \(L \)) is a compact group of isometries of \(M \) (resp., \(N \)); and \(\psi \) covers \(\varphi \).

We have discussed various aspects of our text with many colleagues and with much profit; in particular, S. Hildebrandt, J. Jost, N. Korevaar, B. Lackey, L. Lemaire, C. Plaut, M. Ramachandran, R. Schoen, Richard Stong, K.-T. Sturm, D. Toledo and M. Wolf. Hereby we record our special thanks to all!

It is our pleasure to record our appreciation of the effort of M. Gromov, who graciously responded to our invitation to write a preface. And to T. Serbinowski for providing Chapter 15, a version of an unpublished part of his Thesis.

We further thank the referees, whose constructive comments have substantially improved the final version.

The second named author is grateful for all the facilities at the Department of Mathematics, University of Copenhagen, made available to him in his retirement. In this connection we are indebted to Anders Thorup and Lene Kørner, who helped us with the AmSTeX file.

Cambridge/Warwick
Copenhagen
September 2000

James Eells
Bent Fuglede