Topics in Finite and Discrete Mathematics

Written for a broad audience of students in mathematics, computer science, operations research, statistics, and engineering, this textbook presents a short, lively survey of several fascinating noncalculus topics in modern applied mathematics. Coverage includes probability, mathematical finance, graphs, linear programming, statistics, computer science algorithms, and groups. A key feature is the abundance of interesting examples not normally found in standard finite mathematics courses, such as options pricing and arbitrage, tournaments, and counting formulas.

The author assumes a level of mathematical sophistication at the beginning calculus level; that is, students should have had at least a course in precalculus, and the added sophistication attained from studying calculus would be useful.

Sheldon M. Ross is a professor in the Department of Industrial Engineering and Operations Research at the University of California at Berkeley. He received his Ph.D. in statistics at Stanford University in 1968 and has been at Berkeley ever since. He has published nearly 100 articles as well as a variety of textbooks in the areas of statistics and applied probability. He is the founding and continuing editor of the journal Probability in the Engineering and Informational Sciences, a fellow of the Institute of Mathematical Statistics, and a recipient of the Humboldt U.S. Senior Scientist Award.
Topics in Finite and Discrete Mathematics

SHELDON M. ROSS
University of California at Berkeley
To Rebecca
Contents

Preface page xi

1 Preliminaries 1
 1.1 Sets 1
 1.2 Summation 4
 1.3 Mathematical Induction 8
 1.4 Functions 17
 1.5 The Division Algorithm 23
 1.6 Exercises 28

2 Combinatorial Analysis 34
 2.1 Introduction 34
 2.2 The Basic Principle of Counting 34
 2.3 Permutations 36
 2.4 Combinations 40
 2.5 Counting the Number of Solutions 45
 2.6 The Inclusion–Exclusion Identity 47
 2.7 Using Recursion Equations 52
 2.8 The Pigeonhole Principle 61
 2.9 Exercises 63

3 Probability 70
 3.1 Probabilities and Events 70
 3.2 Probability Experiments Having Equally Likely Outcomes 74
 3.3 Conditional Probability 77
 3.4 Computing Probabilities by Conditioning 80
 3.5 Random Variables and Expected Values 85
 3.6 Exercises 94

4 Mathematics of Finance 97
 4.1 Interest Rates 97
 4.2 Present Value Analysis 100
 4.3 Pricing Contracts via Arbitrage 104
 4.3.1 An Example in Options Pricing 104
 4.3.2 Other Examples of Pricing via Arbitrage 107
viii Contents

4.4 The Arbitrage Theorem 111
4.5 The Multiperiod Binomial Model 116
 4.5.1 The Black–Scholes Option Pricing Formula 120
4.6 Exercises 121

5 Graphs and Trees 124
5.1 Graphs 124
5.2 Trees 127
5.3 The Minimum Spanning Tree Problem 131
5.4 Cliques and Independent Sets 134
5.5 Euler Graphs 142
5.6 Exercises 144

6 Directed Graphs 150
6.1 Directed Graphs 150
6.2 The Maximum Flow Problem 150
6.3 Applications of the Maximum Flow Problem 160
 6.3.1 The Assignment Problem 160
 6.3.2 The Tournament Win Problem 163
 6.3.3 The Transshipment Problem 166
 6.3.4 An Equipment Selection Problem 167
6.4 Shortest Path in Digraphs 170
6.5 Exercises 175

7 Linear Programming 180
7.1 The Standard Linear Programming Problem 180
7.2 Transforming to the Standard Form 184
 7.2.1 Minimization and Wrong-Way Inequality Constraints 185
 7.2.2 Problems with Variables Unconstrained in Sign 186
7.3 The Dual Linear Programming Problem 188
7.4 Game Theory 194
7.5 Exercises 199

8 Sorting and Searching 203
8.1 Introduction to Sorting 203
8.2 The Bubble Sort 203
8.3 The Quicksort Algorithm 206
8.4 Merge Sorts 209
8.5 Sequential Searching 210
8.6 Binary Searches and Rooted Trees 212
8.7 Exercises 218
9 Statistics

9.1 Introduction 220
9.2 Frequency Tables and Graphs 220
9.3 Summarizing Data Sets 223
 9.3.1 Sample Mean, Sample Median, and Sample Mode 223
 9.3.2 Sample Variance and Sample Standard Deviation 225
9.4 Chebyshev’s Inequality 227
9.5 Paired Data Sets and the Sample Correlation Coefficient 229
9.6 Testing Statistical Hypotheses 232
9.7 Exercises 233

10 Groups and Permutations

10.1 Permutations and Groups 237
10.2 Permutation Graphs 243
10.3 Subgroups 244
10.4 Lagrange’s Theorem 249
10.5 The Alternating Subgroup 254
10.6 Exercises 259

Index 263
Preface

This text surveys many of the topics taught in discrete and finite mathematics courses. The topics chosen are widely applied in present-day industry and, at the same time, are mathematically elegant. Chapter 1 begins with such preliminaries as sets, mathematical induction, functions, and the division algorithm of algebra. Chapters 2 and 3 present combinatorics and probability. Chapter 4 introduces the modern approach to finance; it presents the concept of arbitrage and the arbitrage theorem and then uses them to analyze the no-arbitrage costs of options. Chapters 5 and 6 deal with graphs and their many applications. Chapter 7 introduces linear programming. Among other applications, we use the duality theorem to derive the arbitrage theorem as well as the minimax theorem of game theory. Chapter 8 presents sorting and searching techniques that are useful in computer science. Chapter 9 introduces the subject matter of statistics, presenting both its descriptive and inferential side. Chapter 10 deals with groups and permutations.

This book can be used for a course in discrete mathematics, or for one in finite mathematics, or for any course dealing with non–calculus-based applied mathematics. Calculus itself is not required, and a pre-calculus course should suffice as a prerequisite; the added mathematical sophistication attained from studying calculus would be useful. The text evolved from a seminar designed to introduce first-year undergraduates with a strong quantitative bent to the possibilities inherent in mathematics. Consequently, a key feature of the course, as well as of the text, is the emphasis on interesting examples.