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One purpose of the many calculations in later chapters is to demonstrate, as

‘an encouragement to quantitative thinking’, that a little simple arithmetic

can sometimes give useful insights into physiology. Encouragement in this

chapter takes the form of suggestions for minimizing some of the common

impediments to calculation. I have mainly in mind the kinds of arithmetical

problem that can suggest themselves outside the contexts of pre-planned

teaching or data analysis. Some of the ideas are elementary, but they are not

all as well known as they should be. Much of the arithmetic in this book has

deliberately been made easy enough to do in the head (and the calculations

and answers are given at the back of the book anyway). However, it is useful

to be able to cut corners in arithmetic when a calculator is not to hand and

guidance is first given on how and when to do this. Much of this chapter is

about physical units, for these have to be understood, and casual calculation

is too easily frustrated when conversion factors are not immediately to hand.

It is also true that proper attention to units may sometimes propel one’s

arithmetical thinking to its correct conclusion. Furthermore, analysis in

terms of units can also help in the process of understanding the formulae

and equations of physiology, and the need to illustrate this provides a pretext

for introducing some of these. The chapter ends with a discussion of ways in

which exponents and logarithms come into physiology, but even here there

is some attention to the topics of units and of approximate calculation.

1.1 Arithmetic – speed, approximation and error

We are all well drilled in accurate calculation and there is no need to discuss

that; what some people are resistant to is the notion that accuracy may some-

times take second place to speed or convenience. High accuracy in physiol-

ogy is often unattainable anyway, through the inadequacies of data. These

points do merit some discussion. Too much initial concern for accuracy and

1
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rigour should not be a deterrent to calculation, and those people who

confuse the precision of their calculators with accuracy are urged to culti-

vate the skills of approximate (‘back-of-envelope’) arithmetic. Discussed

here are these skills, the tolerances implicit in physiological variability, and

at times the necessity of making simplifying assumptions.

On the matter of approximation, one example should suffice. Consider the

following calculation:

311/330 3 480 3 6.3.

A rough answer is readily obtained as follows:

(nearly 1) 3 (just under 500) 3 (just over 6)

5 slightly under 3000.

The 480 has been rounded up and 6.3 rounded down in a way that should

roughly cancel out the resulting errors. As it happens, the error in the whole

calculation is only 5%.

When is such imprecision acceptable? Here is something more concrete to

be calculated: In a man of 70 kg a typical mass of muscle is 30 kg: what is that

as a percentage? An answer of 42.86% is arithmetically correct, but absurdly

precise, for the mass of muscle is only ‘typical’, and it cannot easily be meas-

ured to that accuracy even with careful dissection. An answer of 43%, even

40%, would seem precise enough.

Note, in this example, that the two masses are given as round numbers,

each one being subject both to variation from person to person and to error

in measurement. This implies some freedom for one or other of the masses to

be changed slightly and it so happens that a choice of 28 kg, instead of 30 kg,

for the mass of muscle would make the calculation easier. Many of the calcu-

lations in this book have been eased for the reader in just this way.

Rough answers will often do, but major error will not. Often the easiest

mistake to make is in the order of magnitude, i.e. the number of noughts or

the position of the decimal point. Here again the above method of approxi-

mation is useful – as a check on order of magnitude when more accurate

arithmetic is also required. Other ways of avoiding major error are discussed

in Section 1.3.

Obviously, wrong answers can be obtained if the basis of a calculation is at

fault. However, some degree of simplification is often sensible as a first step

in the exploration of a problem. Many of the calculations in this book involve

simplifying assumptions and the reader would be wise to reflect on their

2 Introduction to physiological calculation



appropriateness; there is sometimes a thin line between what is inaccurate,

but helpful in the privacy of one’s thoughts, and what is respectable in print.

Gross simplification can indeed be helpful. Thus, the notion that the area of

body surface available for heat loss is proportionately less in large than in

small mammals is sometimes first approached, not without some validity, in

terms of spherical, limbless bodies. The word ‘model’ can be useful in such

contexts – as a respectable way of acknowledging or emphasizing departures

from reality.

1.2 Units

Too often the simplest physiological calculations are hampered by the fact

that the various quantities involved are expressed in different systems of

units for which interconversion factors are not to hand. One source of infor-

mation may give pressures in mmHg, and another in cmH₂O, Pa (5 N/m²) or

dyne/cm² – and it may be that two or three such diverse figures need to be

combined in the calculation. Spontaneity and enthusiasm suffer, and errors

are more likely.

One might therefore advocate a uniform system both for physiology gen-

erally and for this book in particular – most obviously the metric Système

International d’Unité or SI, with its coherent use of kilograms, metres and

seconds. However, even if SI units are universally adopted, the older books

and journals with non-SI units will remain as sources of quantitative infor-

mation (and one medical journal, having tried the exclusive use of SI units,

abandoned it). This book favours the units that seem most usual in current

textbooks and in hospitals and, in any case, the reader is not required to

struggle with conversion factors. Only occasionally is elegance lost, as when,

in Section 5.10, the law of Laplace, so neat in SI units, is re-expressed in other

terms.

Table 1.1 lists some useful conversion factors, even though they are not

much needed for the calculations in the book. Rather, the table is for general

reference and ‘an encouragement to (other) quantitative thinking’. For the

same reason, Appendix A supplies some additional physical, chemical and

mathematical quantities that can be useful to physiologists. Few of us would

wish to learn all of Table 1.1, but, for reasons explained below, readers with

little physics should remember that 1 N 5 1 kg m/s², that 1 J 5 1 N m and that

1 W 5 1 J/s. The factor for converting between calories and joules may also be

worth remembering, although ‘4.1855’ could be regarded as over-precise for

Units 3
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Table 1.1. Conversion factors for units

Time
1 day (d) 86,400 s 1440 min

Distance
1 metre (m) 39.4 inch
1 foot 0.305 m
1 km 0.621 mile
1 Ångstrom unit 0.1 nanometre (nm)

Volume
1 litre (l) 102³ m³ 1 dm³

Velocity
1 mph 0.447 m/s 1.609 km/h

Acceleration (gravitational)
g 9.807 m/s² 32.17 ft/s²

Mass
1 lb 0.4536 kg 16 oz (avoirdupois)

Force
1 newton (N) 1 kg m/s² 102 g-force
1 kg-force 9.807 N 1 kilopond
1 dyne 102⁵ N 1 g cm/s²

Energy
1 joule (J) 1 N m
1 erg 102⁷ N m 1 dyne cm
1 calorie (cal) 4.1855 J
1 m kg-force (1 kg m) 9.807 J

Power
1 watt (W) 1 J/s 860 cal/h

Pressure and stress
1 N/m² 1 pascal (Pa)
1 kg-force/m² 9.807 N/m² 1 mmH₂O
1 torr 1 mmHg 13.6 mmH₂O
1 mmHg 133.3 N/m² 0.1333 kPa
750 mmHg 100.0 kN/m²

1 atmosphere 101.3 kN/m² 760 mmHg

Note: SI units, fundamental or derived, are in bold lettering.



most purposes. In a similar vein, the ‘9.807’ can often be rounded to ‘10’, but

it is best written to at least two significant figures (9.8) since, especially

without units, its identity is then more apparent than that of commonplace

‘10’. It helps to have a feeling for the force of 1 N in terms of weight; it is

approximately that of a 100-g object – Newton’s legendary apple perhaps. As

for pressure, 1 kg-force/m² and 9.807 N/m² may be better appreciated as

1 mmH₂O, which is perhaps more obviously small.

Units may be written, for example, in the form m/s² or m s2². I have chosen

what I believe to be the more familiar style. The solidus (/) may be read as

‘divided by’ or as ‘per’, and often these meanings are equivalent. However,

there is the possibility of ambiguity when more than one solidus is used, and

that practice is best avoided. We shortly meet (for solubility coefficients) a

combination of units that can be written unambiguously as ‘mmol/l per

mmHg’, ‘mmol/l mmHg’, ‘mmol/(l mmHg)’ and ‘mmol l2¹ mmHg2¹’. What is

ambiguous is ‘mmol/l/mmHg’, for if each solidus is read as ‘divided by’

rather than as ‘per’, then the whole combination would be wrongly read as

‘mmol mmHg/l’. In the course of calculations, e.g. involving the cancellation

of units (see below), it can be helpful to make use of a horizontal line to indi-

cate division, so that ‘mmol/l per mmHg’ becomes:

1.3 How attention to units can ease calculations, prevent
mistakes and provide a check on formulae

Students often quote quantities without specifying units, thereby usually

making the figures meaningless. All know that units and their interconver-

sions have to be correct, but the benefits of keeping track of units when cal-

culating are not always fully appreciated. Thus, their inclusion in all stages of

a calculation can prevent mistakes of various kinds. Indeed, attention to

units can sometimes lead to correct answers (e.g. when tiredness makes

other reasoning falter), or help in checking the correctness of half-remem-

bered formulae. Too many people flounder for lack of these simple notions.

The illustrations that follow involve commonplace physiological formulae,

but if some of them are unfamiliar that could even help here, by making the

usefulness of the approach more apparent. The formulae are in a sense inci-

dental, but, since they are useful in their own right, the associated topics are

highlighted in bold type.

mmol/l
mmHg

 or 
mmol

l mmHg
.
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To illustrate the approach I start with an example so simple that the bene-

fits of including units in the calculation may not be apparent. It concerns the

excretion of urea. An individual is producing urine at an average rate of, say,

65 ml/h. The average concentration of urea in the urine is 0.23 mmol/ml. The

rate of urea excretion may be calculated as the product of these quantities,

namely 65 ml/h 3 0.23 mmol/ml. The individual units (ml, mmol and min)

are to be treated as algebraic quantities that can be multiplied, divided or

cancelled as appropriate. Therefore, for clarity, the calculation may be

written out thus:

65 3 0.23 5 15 , i.e. 15 mmol/h.

With the units spelt out like that, it would immediately become apparent if,

say, there were an inappropriate mixing of volume units, e.g. millilitres in

‘ml/h’ with litres in ‘mmol/l’. (What would then need to be done is probably

obvious, but there is one particular kind of procedure for introducing con-

version factors – in this case the ‘1000’ relating ml to l – that can be helpful

when one is trying to calculate with units in an orderly fashion; see Notes and

Answers, note 1.3A.) It would also be obvious if the mistake were made of

dividing insteading of multiplying – since the ‘ml’ would not then cancel. If

unsure whether to multiply the two quantities together, or to divide one by

the other, one would only have to try out the three possible calculations to

see which one yields a combination of units appropriate to excretion rate, i.e.

mmol/h and not, say, ml²/(mmol h).

The calculation of rates of substance flow from products of concentration

and fluid flow in that way is commonplace in physiology and the idea leads

directly to the concept of renal clearance, and specifically to the use of inulin

clearance as a measure of glomerular filtration rate (GFR). Often, when I

have questioned students about inulin clearance, they have been quick to

quote an appropriate formula, but have been unable to suggest appropriate

units for what it yields. It is the analysis of the formula in terms of units that is

my ultimate concern here, but a few lines on its background and derivation

may be appropriate too. For the measurement of GFR, the plant polysaccha-

ride inulin is infused into the body and measurements are later made of the

concentrations in the blood plasma (P ) and urine (U ) and of the rate of urine

flow (V ). The method depends on two facts: first, that the concentration in

the glomerular filtrate is essentially the same as the concentration in the

plasma and, second, that the amount of inulin excreted is equal to the

mmol
h

mmol
ml

ml
h
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amount filtered. The rate of excretion is UV (as for urea) and the rate of filtra-

tion is GFR 3 P (again a flow times a concentration). Thus:

GFR 3 P 5 UV,

so that:

GFR 5 . (1.1)

Although the quantity calculated here is the GFR, it can also be thought of as

the rate at which plasma would need to be completely cleared of inulin to

explain the excretion rate (whereas in fact a larger volume is partially

cleared). Hence the term ‘renal plasma clearance’. The formula may be gen-

eralized to calculate clearances for other excreted substances:

renal plasma clearance 5 . (1.2)

It may be obvious that GFR needs to be expressed in terms of a volume per

unit time, but for the more abstruse concept of clearance the appropriate

units are less apparent. This brings us to my main point, that appropriate

units can be found by analysis of the formula.

If the concentrations are expressed as g/ml, and the urine flow rate is

expressed as ml/min, then the equation can be written in terms of these

units as follows:

units for clearance 5 .

Since ‘g/ml’ appears on the top and bottom lines, it can be cancelled, leaving

the right-hand side of the equation as ‘ml/min’. Such units (volume per unit

time) are as appropriate to clearances in general as to GFR.

To reinforce points made earlier, suppose now that equation 1.1 is wrongly

remembered, or that the concentrations of inulin in the two fluids are

expressed differently, say one as g/l and one as g/ml. If the calculation is

written out with units, as advocated, then error is averted.

It has been emphasized that rates of substance flow can be calculated as

products of concentration and fluid flow. In another context, the rate of

oxygen flow in blood may be calculated as the product of blood oxygen

content and blood flow, and the rate of carbon dioxide loss from the body

may be calculated as the product of the concentration (or percentage) of the

g/ml 3 ml/min
g/ml

UV
P

UV
P
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gas in expired air and the respiratory minute volume. Such ideas lead

straight to the Fick Principle as applied, for example, to the estimation of

cardiac output from measurements of whole-body oxygen consumption

and concentrations of oxygen in arterial and mixed-venous blood. The

assumption is that the oxygen consumption is equal to the difference

between the rates at which oxygen flows to, and away from, the tissues:

oxygen consumption

5 cardiac output 3 (arterial [O₂] 2 cardiac output 3 mixed-venous [O₂]

5 cardiac output 3 (arterial [O₂] 2 mixed-venous [O₂]),

where the square brackets indicate concentrations. From this is derived the

Fick Principle formula:

cardiac output 5 . (1.3)

Re-expressed in terms of units, this becomes:

cardiac output 5 5 l blood/min.

Note two points. First, mistakes may be avoided if the substances (oxygen

and blood) are specified in association with the units (‘ml O₂/l blood’ rather

than ‘ml/l’). Second, the two items in the bottom line of equation 1.3 have the

same units and are lumped together in the treatment of units. Actually, since

one is subtracted from the other, it is a necessity that they share the same

units. Indeed, if one finds oneself trying to add or subtract quantities with

different units, then one should be forced to recognize that the calculation is

going astray.

We turn now to the mechanical work that is done when an object is lifted

and when blood is pumped. When a force acts over a distance, the mechani-

cal work done is equal to the product of force and distance. Force may be

expressed in newtons and distance in metres. Therefore, work may be

expressed in N m, the product of the two, but also in joules, since 1 J 5 1 N m

(Table 1.1). Conversion to calories, etc. is also possible, but the main point

here is something else. When an object is lifted, the work is done against

gravity, the force being equal (and opposite) to the object’s weight. Weights

are commonly expressed as ‘g’ or ‘kg’, but these are actually measures of mass

and not of force, whereas the word ‘weight’ should strictly be used for the

downward force produced by gravity acting on mass. A mass of 1 kg may be

ml O2/min
ml O2/l blood

5
ml O2

min
3

l blood
ml O2

oxygen consumption
arterial [O2] 2 mixed-venous [O2]
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more properly spoken of as having a weight of 1 kg-force. Weight depends on

the strength of gravity, the latter being expressed in terms of g, the gravita-

tional acceleration. This is less on the Moon than here, and it is variable on

the Earth in the third significant figure, but for the purpose of defining ‘kg-

force’ the value used is 9.807 m/s², with 1 kg-force being 9.807 N (Table 1.1).

This distinction between mass and weight is essential to the procedures

advocated here for analysing equations in terms of units and including units

in calculations to avoid error.

In relation to the pumping of blood, the required relationship is not ‘work

equals force times distance’, but ‘work equals increase in pressure times

volume pumped’. If unsure of the latter relationship, can one check that it

makes sense in terms of units? The analysis needs to be in terms of SI units,

not, say, calories, mmHg and litres. Areas are expressed as m², and volumes

as m³. Accordingly:

work (J) 5 pressure 3 volume 5 N/m² 3 m³ 5 3 m³ 5 N m 5 J.

Next we have a situation requiring the definition of the newton as 1 kg m/s².

The pressure due to a head of fluid, e.g. in blood at the bottom of a vertical

blood vessel, is calculated as rgh, where r is the density of the fluid, g is the

gravitational acceleration (9.807 m/s²) and h is the height of fluid. To check

that this expression really yields units of pressure (N/m²), we write:

rgh 5 3 m 5

Recalling that 1 N 5 1 kg m/s², we now write:

pressure 5 5 ,

which is the same expression as before.

There are some quantities for which the units are not particularly memor-

able for most of us, including peripheral resistance and the solubility coeffi-

cients for gases in liquids. Appropriate units may be found by analysis of the

equations in which they occur. Peripheral resistance is discussed in Section

4.3, while here we consider the case of gas solubility coefficients, and spe-

cifically the solubility coefficient of oxygen in body fluids such as blood

plasma. The concentration of oxygen in simple solution, [O₂], increases with

the partial pressure, PO₂, and with the solubility coefficient, SO₂:

kg
m s2

N
m2

5
kg m

s2
3

1
m2

kg
m s2

kg
m3

3
m
s2

N
m2
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[O₂] 5 SO₂PO₂. (1.4)

The concentration may be wanted in ml O₂/l fluid or in mmol/l, with the

partial pressure being specified in mmHg, kPa or atmospheres, but let us

choose mmol/l and mmHg. Rearranging equation 1.4 we see that SO₂ equals

the ratio [O₂]/PO₂, so that the compatible solubility coefficient is found by

writing:

5 mmol/l per mmHg or mmol/l mmHg.

To reinforce the theme of how to avoid errors, note what happens if an

incompatible form of solubility coefficient is used in a calculation. In differ-

ent reference works, solubility coefficients may be found in such forms as

‘ml/l per atmosphere’, ‘mmol/(l Pa)’, etc., as well as mmol/l per mmHg. If the

first of these versions were to be used in a calculation together with a gas

pressure expressed in mmHg, then the units of concentration would work

out as:

3 mmHg 5 ml O₂ mmHg/(l fluid atmosphere).

The need to think again would at once be apparent.

The above illustrations have variously involved SI and non-SI units in

accordance with need and convenience, but other methods of analysis are

sometimes appropriate that are less specific about units, at least in the early

stages. It is mainly to avoid complicating this chapter that a description of

‘dimensional analysis’ is consigned to Notes and Answers, note 1.3B, but it is

also less generally useful than unit analysis. We look next at diffusion to illus-

trate a slightly different approach in which the choice of units is deferred.

Suppose that an (uncharged) substance S diffuses from region 1 to region

2 along a diffusion distance d and through a cross-sectional area a. The

(uniform) concentrations of S in the two regions are respectively [S]₁ and

[S]₂. The rate of diffusion is given by the following equation:

rate 5 ([S]₁ 2 [S]₂) 3 a/d 3 D, (1.5)

where D is the ‘diffusion coefficient’. The appropriate units for D may be

found by rearranging the equation and proceeding as follows:

D 5 .
rate

[S]1 2 [S]2
3

d
a

5
rate

concentrations
3

distance
area

ml O2/l fluid
atmosphere

[O2]
PO2

5
mmol

l
3

1
mmHg

5
mmol/l
mmHg
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The rate of diffusion is the amount of S diffusing per unit of time and concen-

trations are amounts of S per unit of volume. Therefore:

D 5 .

Following the practice adopted above, the various items in the right-hand

expression could have been given in terms of kg, s, m³, m² and m, and that

approach would be valid. Diffusion coefficients are in fact commonly given

as cm²/s, so let us now specify distance, area and volume in terms of cm, cm²

and cm³, and time in seconds. Then the expression becomes:

units for D 5 .

Note that it is irrelevant here how the amount of substance is expressed,

whether it be in g, mmol, etc. For another form of diffusion coefficient, relat-

ing to gas partial pressures, see Notes and Answers, note 1.3C.

It must be acknowledged finally that some equations are not sensibly ana-

lysed in terms of units. These are empirically derived formulae that have no

establishedtheoreticalbasis.Forexample,thereareformulaethatrelatevital

capacity, in litres, to age in years and body height in centimetres; there is no

way of combining units of time and length to obtain units of volume. One

mustrememberthisgeneralpointtoavoidbeingpuzzledsometimes,butitis

alsotruethattheanalysisofanempiricalequationintermsofunitsordimen-

sionscansometimesleadtoitsrefinementandtotheoreticalunderstanding.

Conclusions

Although the main theme here is the avoidance of error by consideration of

units, it has also provided a context in which to introduce various commonly

used formulae. In case these have obscured the ideas pertinent to the main

theme, it may be helpful to summarize those ideas here.

1. Units can be combined, manipulated and cancelled like algebraic
symbols.

2. The two sides of an equation must balance in terms of units as well
as numerically.

3. If a formula calls for quantities to be expressed in particular units,
then mistakes in this regard are preventable by writing them out as
part of the calculation.
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4. When quantities of more than one substance are involved, it is
usually advisable to specify these along with the units, writing, for
example, ‘ml O₂/ml blood’ rather than simply ‘ml/ml’ (which
cancels, unhelpfully, to 1).

5. Quantities expressed in differing units cannot be combined by
addition or subtraction.

6. Attention to units may prevent quantities from being
inappropriately combined in other ways too (multiplied instead of
divided, for example). Indeed it may suggest the right way of
calculating something when other forms of reasoning falter.

7. Analysis of units may provide a partial check on half-remembered
formulae.

8. Appropriate units for unfamiliar quantities can be found by
analysing the equations in which they occur.

9. Weight (force) must be distinguished from mass (quantity).
10. Analysis of units sometimes requires knowledge that 1 N 5

1 kg m/s².
11. Units on the two sides of an equation may not balance if the

relationship is empirical and has no theoretical basis.

To these ideas may be added two others, relating to indices and logarithms,

that emerge in the next Section.

12. Exponents (indices) must be dimensionless, i.e. they can have no
units.

13. Strictly it is not possible to take the logarithm of a number that has
dimensions or units, although there are situations in which it is
acceptable to do so.

Practice in unit analysis

Readers wishing to practise unit analysis might like to try the following exer-

cises (some relating to physics rather than physiology). Help is given Notes

and Answers.

1. If SI units for viscosity are unfamiliar, find them by analysing
Poiseuille’s equation. This relates the rate of flow of fluid, i.e.
volume per unit time, in a cylindrical tube (e.g. blood in a blood
vessel) to viscosity, to the radius and length of the tube and to the
difference in hydrostatic pressure between its two ends:
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flow rate ~ pressure difference 3 . (1.6)

2. Einstein’s ‘E 5 mc²’ is well known. Treating energy, mass and
velocity in terms of SI units, show that the two sides of the
equation are compatible.

3. If ‘RT/zF ’ is already familiar in relation to the Nernst equation,
analyse it in terms of units. Its components are given in Appendix
A, while the units for the whole expression are ‘volts’. For this
exercise, use the versions of R and F that involve calories.
Appendix A also gives F in terms of coulombs; I have seen it given
in physics textbooks as ‘coulombs’, ‘coulombs/equivalent’ and
‘coulombs/volt equivalent’, and this suggests another exercise. I
give F as coulombs/volt equivalent, but is that correct? More
specifically, do the relationships discussed in Section 7.6 then
work out correctly in terms of units?

4. If the formula for calculating the period of a simple pendulum was
once known, but is now forgotten, try reconstructing it by unit
analysis, albeit partially, given only that the period increases with
pendulum length and decreases with g.

1.4 Analysis of units in expressions involving exponents (indices)

Two main points are made here in relation to the unit analysis of equations

containing exponents, one concerning the exponents themselves and the

other having to do with other constants. At the same time, the opportunity is

taken to say a little about exponential time courses and allometric relation-

ships. The basic rules for working with exponents (indices) are given in

Appendix B.

The first point is simply that exponents must be dimensionless quantities;

they cannot have units. Thus, ‘3² eggs’ is meaningful, but ‘3² eggs’ is not. While

the 2 in 3² eggs is a simple number, exponents can also be expressions con-

taining two or more variables that do have units – such as 3a/b, for example.

This is satisfactory provided that the units cancel out. Thus, 3(⁴ eggs/² eggs)

equals 3². As a more serious example, and one commonly encountered in

physiology, the simplest kinds of exponential time course are described by

equations of the form:

Y 5 Y₀ ekt, (1.7)

radius4

viscosity 3 length
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where Y is the variable in question, t is time (in seconds, say), Y₀ is the the

value of Y when t 5 0 and k is a constant (the ‘rate constant’, often negative)

with units of time2¹ (here s2¹ or 1/s). The e has its usual meaning, a number

close to 2.718. Here the units in kt cancel out (i.e. s/s 5 1). An alternative to ekt

in equation 1.7 is et/t where the commonly used symbol t (tau) is equal to 1/k,

and is called the ‘time constant’. This has the same units as t, so that t/t, like

kt, is dimensionless.

The second point is one that could be harmlessly ignored (as it is by many

physiologists) were it not that I have put so much emphasis on unit analysis.

It concerns certain kinds of empirical relationship, as opposed to relation-

ships founded in theory. Countless physiological and anatomical measure-

ments have been made on mammals of different sizes, from shrews to

whales, and the relationships between these and body mass have been

explored. (In relation to purely human physiology, one may likewise explore

relationships in individuals of differing size.) In very many cases the vari-

able, Y, has been found to depend on body mass, M, in accordance with this

equation:

Y 5 a Mb, (1.8)

where a and b are constants. There is always some statistical scatter in these

so-called ‘allometric’ relationships, with consequent uncertainty about the

best values of the constants. To start with a case that gives no problem with

unit analysis, it appears that heart mass is near-enough exactly proportional

to M over seven orders of magnitude, such that Y 5 0.006M¹.⁰, with both

masses in kg. (This implies that the heart makes up about 0.6% of body mass

over the full size range.) There is no difficulty with units here, the ‘0.006’

having none. To see how problems can arise, consider next the case of skele-

tal mass.

As Galileo pointed out in 1637, relative skeletal mass should increase with

body mass, at least in land mammals, if the largest are not to collapse under

their own weight (or the smallest are not to be burdened with extra bone).

Here is an equation that has been fitted to data on dry skeletal mass (Prange

et al., 1979):

skeletal mass (kg) 5 0.061 M¹.⁰⁹. (1.9)

Now there is a difficulty, for M¹.⁰⁹ has units of kg¹.⁰⁹ and this suggests that the

‘0.061’ has units of kg2⁰.⁰⁹ (with some uncertainty due to scatter in the data).

This makes no obvious sense. A solution is to divide M by some reference

mass,mostconveniently1kg,sothattheequationbecomes,inthelattercase:
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skeletal mass (kg) 5 0.061 
¹.⁰⁹

. (1.10)

Unlike M, the ratio M/(1 kg) is dimensionless. On this basis, the ‘0.061’ is in

kg, like skeletal mass. Put more generally, the constant a in equation 1.8

comes to have the same units as Y. Usually this rather pedantic procedure is

not explicitly followed and no harm results. There is more on allometric rela-

tionships in Sections 1.5, 3.10, 3.12 and 6.16.

1.5 Logarithms

Physiologists use logarithms in a variety of contexts, notably in relation to

membrane potentials (Nernst equation), acid–base balance (pH,

Henderson–Hasselbalch equation), sensory physiology (Weber–Fechner

‘law’) and graphical analysis (of exponential time courses, allometry, dose-

response curves). Since logarithms now play a much smaller part in school

mathematics than formerly, they are explained in Appendix B. The main

purpose of this Section is to say a little more about their use in the contexts

just mentioned, but it concludes by returning briefly to the topic of rough

calculation. Given the emphasis I have placed on unit analysis earlier in the

chapter, I must first make a comment relating to that.

On the matter of units, it should be noted that strictly one can only take log-

arithms of dimensionless numbers, i.e. quantities that lack units. I say

‘strictly’ because people do commonly flout this rule, and do so without con-

sequent difficulties or opprobrium. Thus, the elementary, and oldest, defini-

tion of pH is that it equals 2log₁₀[H1], where [H1] is the concentration of

hydrogen ions in mol/l, the units being simply ignored in the calculation.

The definition is in fact an oversimplification (Section 8.1), but we can move

just one step towards a better definition by dividing [H1] by a standard con-

centration, [H1]s, of 1 mol/l {so that pH is defined as 2 log₁₀([H1]/[H1]s)}. The

units of concentration are thus removed, while the number is unaffected

(see the treatment of indices in Section 1.4). This exemplifies a general solu-

tion to the problem of taking logarithms of a quantity that has units: instead

of ignoring them, one divides the quantity by some reference value, usually

with a numerical value of 1. The next paragraph refers to logarithms of

certain quantities Y and M; for propriety, these may be regarded as each

divided by a reference quantity of one unit.

One use for logarithms is in the graphical analysis of exponential and allo-

metric relationships (equations 1.7 and 1.8). In the case of equation 1.7, a

3 M
1 kg4
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graph of ln Y ( 5 logeY ) against t yields a straight line of gradient k.

Alternatively, a graph of log₁₀Y against t gives a straight line of gradient

klog₁₀e.An example is shown in Figure 5.4. In the case of equation 1.8, a graph

of log Y against log M yields a straight line of gradient b.

Actually, there is sometimes another reason for plotting logarithms in

these contexts. This is notably true in relation to the allometry of mammals

of widely varying size for, on a linear scale, it is simply too hard to show com-

fortably the masses of shrews, whales, and all mammals in between. To cope

with that great range of masses, one may plot log M (ignoring the mass units

to do so), or else show actual values of M, using a logarithmic scale (e.g.

showing, say, 0.1 kg, 1 kg, 10 kg,  etc. at equally spaced intervals). Logarithmic

scales are often used, at least partly for the same reason, for displaying drug

concentrations (for dose-response curves).

Returning to the subject of hydrogen ion concentrations, these too vary

over a huge range of magnitudes, and this is one reason why people prefer to

work with pH. Thus, 102⁴ and 102⁸ mol/l water translate to pH 4 and pH 8

respectively. Sound intensities likewise vary enormously, making the loga-

rithmic decibel scale convenient for the same reason. The decibel scale ties

in with the Weber–Fechner law, the tendency for sensation to vary (not

always exactly) with the logarithm of stimulus intensity.

In line with the logarithmic nature of pH, the Henderson–Hasselbalch

equation, relating pH to PCO₂ and bicarbonate concentration, is usually for-

mulated in logarithmic terms (see Notes and Answers):

pH 5 pK₁9 1 log , (1.11)

where pK₁9 is a dissociation constant. (It will be apparent soon why the equa-

tion is expressed this way, rather than more usefully as in equation 8.1, where

SPCO₂ replaces [CO₂].)

The pH meter responds linearly to log [H1] (as if it were a sense organ

obeying the Weber–Fechner law). This is because the electrical potential

across the glass membrane of the electrode, EH, depends, at equilibrium, on

the hydrogen concentrations (or rather activities) on its two sides in accor-

dance with the Nernst equation:

EH 5 ln . (1.12)

(R, T and F are often described simply as ‘having their usual values’; they are

given in Appendix A. z is the valency of the hydrogen ion, i.e. 1.) The sub-

[H1]1

[H1]2

RT
zF

[HCO3]
[CO2]
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scripts 1 and 2 denote the two sides of the membrane. The pH on the inside of

the glass electrode is constant. This description of the pH electrode is inci-

dental, but the Nernst equation is essential to the understanding of cell

membrane potentials and ion transport, and it is in these contexts that the

equation is more often encountered. Here it is reformulated for the equilib-

rium potential of potassium (at 37 oC):

EK (mV) 5 61.5 log . (1.13)

Note that we have here the logarithm of a ratio, the ratio of two quantities

expressed in identical units, i.e. [K1]₁ and [K1]₂. The same is true of equations

1.11 and 1.12. Such ratios are dimensionless, so that there is no problem here

of taking the logarithms of quantities that have units. However, a further

point can be made in this connection. Note that the expression log

([K1]₁/[K1]₂) is equal to (log [K1]₁ 2 log [K1]₂); if the first is valid, so too is the

latter. Where there is a difference between two logarithms like that, the

impropriety of one is cancelled out by the impropriety of the other.

Finally, we return to the subject of approximate arithmetic. In Appendix B

there is a brief comment on the effects on calculations of inaccuracies occur-

ring in logarithmic terms. (Question: how wrong might [H1] be if pH is only

accurate to two decimal places?) Appendix B also emphasizes the usefulness

of remembering that log₁₀ 2 is close to 0.30. Let us explore an example.

Equations 1.11, 1.12 and 1.13 each include the logarithm of a concentration

ratio. If this ratio starts with a value A, and then doubles to 2A, then the loga-

rithm of the ratio increases by 0.30 (because log 2A 5 log 2 1 log A). Likewise,

halving the ratio decreases its logarithm by 0.30. With the Henderson–

Hasselbalch equation in mind, we can therefore see, without further calcu-

lation, that doubling of [HCO₃2] or halving of [CO₂] should raise the pH by

0.30. Since [CO₂] is proportional to PCO₂, it is also true that halving PCO₂ would

raise the pH by 0.30. Let us put this into the context of an approximate calcu-

lation that does not even require the back of an envelope:

Question: At constant PCO2, could a rise in bicarbonate concentration from
20 mM to 30 mM explain a rise in pH from 7.10 to 7.43?

Answer: No – even a doubling of concentration only leads to a rise of
0.3 unit.

[K1]1

[K1]2
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