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1 Introduction to physiological calculation:
approximation and units

One purpose of the many calculationsin later chaptersis to demonstrate, as
‘an encouragement to quantitative thinking’, that a little simple arithmetic
can sometimes give useful insights into physiology. Encouragement in this
chapter takes the form of suggestions for minimizing some of the common
impedimentsto calculation. [ have mainly in mind the kinds of arithmetical
problem that can suggest themselves outside the contexts of pre-planned
teaching or data analysis. Some of the ideas are elementary, but they are not
all as well known as they should be. Much of the arithmetic in this book has
deliberately been made easy enough to do in the head (and the calculations
and answers are given at the back of the book anyway). However, it is useful
to be able to cut corners in arithmetic when a calculator is not to hand and
guidance is first given on how and when to do this. Much of this chapter is
aboutphysicalunits, for these have tobe understood, and casual calculation
istooeasilyfrustrated when conversion factorsarenotimmediately tohand.
It is also true that proper attention to units may sometimes propel one’s
arithmetical thinking to its correct conclusion. Furthermore, analysis in
terms of units can also help in the process of understanding the formulae
and equationsofphysiology,and theneed toillustrate this provides a pretext
forintroducing some of these. The chapter ends with a discussion of waysin
which exponents and logarithms come into physiology, but even here there
issome attention to the topics of units and of approximate calculation.

1.1 Arithmetic - speed, approximation and error

We are all well drilled in accurate calculation and there is no need to discuss
that;whatsomepeopleareresistanttoisthenotionthataccuracymaysome-
times take second place to speed or convenience. High accuracy in physiol-
ogy is often unattainable anyway, through the inadequacies of data. These
points do meritsome discussion. Too much initial concern for accuracy and
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rigour should not be a deterrent to calculation, and those people who
confuse the precision of their calculators with accuracy are urged to culti-
vate the skills of approximate (‘back-of-envelope’) arithmetic. Discussed
here are these skills, the tolerances implicit in physiological variability, and
attimes the necessity of making simplifying assumptions.

Onthematterofapproximation, one exampleshouldsuffice. Considerthe
following calculation:

311/330 X 480 X 6.3.
Arough answerisreadily obtained as follows:

(nearly 1) X (just under 500) X (just over 6)
= slightly under 3000.

The 480 has been rounded up and 6.3 rounded down in a way that should
roughly cancel out the resulting errors. As it happens, the error in the whole
calculationis only 5%.

Whenissuchimprecisionacceptable? Hereissomethingmore concreteto
be calculated: In a man of 70 kg a typical mass of muscle is 30 kg: what is that
as a percentage? An answer of 42.86% is arithmetically correct, but absurdly
precise, for the mass of muscle is only ‘typical’, and it cannot easily be meas-
ured to that accuracy even with careful dissection. An answer of 43%, even
40%, would seem precise enough.

Note, in this example, that the two masses are given as round numbers,
each one being subject both to variation from person to person and to error
inmeasurement. Thisimpliessomefreedomforoneorotherofthemassesto
be changed slightly and it so happens that a choice of 28 kg, instead of 30 kg,
forthe mass of musclewould make the calculation easier. Many of the calcu-
lations in thisbook have been eased for thereader in just this way:.

Rough answers will often do, but major error will not. Often the easiest
mistake to make is in the order of magnitude, i.e. the number of noughts or
the position of the decimal point. Here again the above method of approxi-
mation is useful — as a check on order of magnitude when more accurate
arithmeticisalsorequired. Other ways ofavoiding major error are discussed
inSection1.3.

Obviously, wrong answers can be obtained ifthe basis of a calculationis at
fault. However, some degree of simplification is often sensible as a first step
intheexploration ofaproblem. Many ofthe calculationsin thisbookinvolve
simplifying assumptions and the reader would be wise to reflect on their
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appropriateness; there is sometimes a thin line between whatisinaccurate,
buthelpfulin the privacy of one’s thoughts, and what is respectable in print.
Gross simplification can indeed be helpful. Thus, the notion that the area of
body surface available for heat loss is proportionately less in large than in
smallmammalsissometimesfirstapproached, notwithoutsomevalidity,in
terms of spherical, limbless bodies. The word ‘model’ can be useful in such
contexts—asarespectablewayofacknowledgingoremphasizingdepartures
from reality.

1.2 Units

Too often the simplest physiological calculations are hampered by the fact
that the various quantities involved are expressed in different systems of
units for which interconversion factors are not to hand. One source of infor-
mation may give pressures inmmHg, and anotherin cmH,O, Pa (= N/m?) or
dyne/cm? - and it may be that two or three such diverse figures need to be
combinedinthe calculation. Spontaneity and enthusiasm suffer, and errors
aremore likely.

One might therefore advocate a uniform system both for physiology gen-
erally and for this book in particular — most obviously the metric Systeme
International d’Unité or SI, with its coherent use of kilograms, metres and
seconds. However, even if SI units are universally adopted, the older books
and journals with non-SI units will remain as sources of quantitative infor-
mation (and one medical journal, having tried the exclusive use of SI units,
abandoned it). This book favours the units that seem most usual in current
textbooks and in hospitals and, in any case, the reader is not required to
strugglewith conversionfactors. Onlyoccasionallyiselegancelost,aswhen,
inSection5.10, thelawof Laplace, soneatin STunits, isre-expressed in other
terms.

Table 1.1 lists some useful conversion factors, even though they are not
much needed for the calculations in the book. Rather, the table is for general
reference and ‘an encouragement to (other) quantitative thinking’. For the
same reason, Appendix A supplies some additional physical, chemical and
mathematical quantities that can be useful to physiologists. Few of uswould
wish to learn all of Table 1.1, but, for reasons explained below, readers with
little physics should rememberthat 1 N = 1kgm/s?, that1] = 1 Nmand that
1W = 1]/s.Thefactorfor convertingbetween calories and joulesmayalsobe
worthremembering, although ‘4.1855’ could beregarded as over-precise for
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Table 1.1. Conversion factors for units

Time
1 day (d)

Distance
1 metre (m)
1 foot
1 km
1 Angstrom unit

Volume
1 litre ()

Velocity
1 mph

Acceleration (gravitational)

4

Mass
11b

Force
1 newton (N)
1 kg-force
1 dyne

Energy
1joule (J)
lerg
1 calorie (cal)
1 m kg-force (1 kg m)

Power
1 watt (W)

Pressure and stress
1 N/m?
1 kg-force/m?
1 torr
1 mmHg
750 mmHg
1 atmosphere

86,400 s

39.4inch

0.305 m

0.621 mile

0.1 nanometre (nm)

10-3m?3

0.447 m/s

9.807 m/s2

0.4536 kg

1kgm/s?
9.807 N
105N

I1Nm
1007Nm
4.1855]
9.807]

1]/s

1 pascal (Pa)
9.807 N/m?
1 mmHg
133.3 N/m?
100.0 kN/m?2
101.3 kN/m?2

1440 min

1 dm3

1.609 km/h

32.17 ft/s?

16 oz (avoirdupois)

102 g-force
1 kilopond
1gcm/s?

1 dyne cm

860 cal/h

1 mmH,0
13.6 mmH,0
0.1333 kPa

760 mmHg

Note: Sl units, fundamental or derived, are in bold lettering.
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most purposes. Inasimilar vein, the ‘9.807’ can often be rounded to ‘10’, but
it is best written to at least two significant figures (9.8) since, especially
without units, its identity is then more apparent than that of commonplace
‘10’ It helps to have a feeling for the force of 1 N in terms of weight; it is
approximatelythatofa 100-gobject—-Newton’slegendary apple perhaps. As
for pressure, 1 kg-force/m2? and 9.807 N/m? may be better appreciated as
1 mmH,0, whichis perhaps more obviously small.

Unitsmaybewritten, forexample, in theformm/s2orms-2.Thave chosen
what I believe to be the more familiar style. The solidus (/) may be read as
‘divided by’ or as ‘per’, and often these meanings are equivalent. However,
thereis the possibility of ambiguitywhen more than one solidusis used, and
that practice is best avoided. We shortly meet (for solubility coefficients) a
combination of units that can be written unambiguously as ‘mmol/l per
mmHg’, ‘mmol/lmmHg’,‘mmol/(ImmHg)’ and ‘mmoll-' mmHg-*.Whatis
ambiguous is ‘mmol/l/mmHg), for if each solidus is read as ‘divided by’
rather than as ‘per’, then the whole combination would be wrongly read as
‘mmolmmHg/I" Inthe courseofcalculations, e.g.involving the cancellation
of units (see below), it can be helpful to make use ofahorizontal line to indi-
cate division, so that ‘mmol/l per mmHg’ becomes:

mmol/1 or mmol
mmHg — ImmHg

1.3 How attention to units can ease calculations, prevent
mistakes and provide a check on formulae

Students often quote quantities without specifying units, thereby usually
making the figures meaningless. All know that units and their interconver-
sions have to be correct, but the benefits of keeping track of units when cal-
culatingarenotalwaysfullyappreciated. Thus, theirinclusionin all stages of
a calculation can prevent mistakes of various kinds. Indeed, attention to
units can sometimes lead to correct answers (e.g. when tiredness makes
other reasoning falter), or help in checking the correctness of half-remem-
bered formulae. Too many people flounder for lack of these simple notions.
Theillustrations that follow involve commonplace physiological formulae,
but if some of them are unfamiliar that could even help here, by making the
usefulness of the approach more apparent. The formulae are in a sense inci-
dental, but, since they are useful in their ownright, the associated topics are
highlighted in bold type.
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Toillustrate the approachIstart with an example so simple that the bene-
fitsofincludingunitsin the calculationmaynotbeapparent.Itconcernsthe
excretion of urea. An individual is producing urine at an average rate of, say,
65ml/h.Theaverage concentration ofureainthe urineis0.23mmol/ml.The
rate of urea excretion may be calculated as the product of these quantities,
namely 65 ml/h X 0.23 mmol/ml. The individual units (ml, mmol and min)
are to be treated as algebraic quantities that can be multiplied, divided or
cancelled as appropriate. Therefore, for clarity, the calculation may be

written out thus:
ml mmol mmol .
65— x0.23 =15 ,i.e. 15 mmol/h.
h ml h

With the units spelt out like that, it would immediately become apparent if,
say, there were an inappropriate mixing of volume units, e.g. millilitres in
‘ml/h’ with litres in ‘mmol/l’. (What would then need to be done is probably
obvious, but there is one particular kind of procedure for introducing con-
version factors - in this case the ‘1000’ relating ml to 1 - that can be helpful
whenoneistryingto calculatewithunitsinanorderlyfashion; see Notesand
Answers, note 1.3A.) It would also be obvious if the mistake were made of
dividing insteading of multiplying — since the ‘ml’ would not then cancel. If
unsure whether to multiply the two quantities together, or to divide one by
the other, one would only have to try out the three possible calculations to
seewhichoneyieldsacombinationofunitsappropriateto excretionrate,i.e.
mmol/h and not, say, ml2/ (mmol h).

The calculation of rates of substance flow from products of concentration
and fluid flow in that way is commonplace in physiology and the idea leads
directlytothe conceptofrenal clearance, and specifically to theuse ofinulin
clearance as a measure of glomerular filtration rate (GFR). Often, when I
have questioned students about inulin clearance, they have been quick to
quote an appropriate formula, buthave been unable to suggest appropriate
unitsforwhatityields. Itis the analysis of the formulain terms of units thatis
my ultimate concern here, but a few lines on its background and derivation
maybeappropriate too. For the measurement of GFR, the plant polysaccha-
ride inulin is infused into the body and measurements are later made of the
concentrationsintheblood plasma (P) and urine (U) and of the rate ofurine
flow (V). The method depends on two facts: first, that the concentration in
the glomerular filtrate is essentially the same as the concentration in the
plasma and, second, that the amount of inulin excreted is equal to the
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amount filtered. The rate of excretionis UV (as for urea) and the rate of filtra-
tionis GFR X P(again aflowtimes a concentration). Thus:

GFR X P=UYV,
so that:
uv
GFR=—-. 1.1
P (1.1)

Although the quantity calculated here is the GFR, itcan also be thought ofas
the rate at which plasma would need to be completely cleared of inulin to
explain the excretion rate (whereas in fact a larger volume is partially
cleared). Hence the term ‘renal plasma clearance’. The formula may be gen-
eralized to calculate clearances for other excreted substances:

uv
renal plasma clearance = R (1.2)

It may be obvious that GFR needs to be expressed in terms of a volume per
unit time, but for the more abstruse concept of clearance the appropriate
units are less apparent. This brings us to my main point, that appropriate
units can be found by analysis of the formula.

If the concentrations are expressed as g/ml, and the urine flow rate is
expressed as ml/min, then the equation can be written in terms of these
units as follows:

, g/ml X ml/min
units for clearance =*"—————
g/ml

Since ‘g/ml’ appearsonthe top and bottomlines, it canbe cancelled, leaving
theright-hand side of the equation as ‘ml/min’. Such units (volume per unit
time) are as appropriate to clearancesin general as to GFR.

Toreinforce pointsmade earlier, supposenowthatequation1.1iswrongly
remembered, or that the concentrations of inulin in the two fluids are
expressed differently, say one as g/l and one as g/ml. If the calculation is
written out with units, as advocated, then erroris averted.

It has been emphasized that rates of substance flow can be calculated as
products of concentration and fluid flow. In another context, the rate of
oxygen flow in blood may be calculated as the product of blood oxygen
content and blood flow, and the rate of carbon dioxide loss from the body
maybe calculated as the product of the concentration (or percentage) of the
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gas in expired air and the respiratory minute volume. Such ideas lead
straight to the Fick Principle as applied, for example, to the estimation of
cardiac output from measurements of whole-body oxygen consumption
and concentrations of oxygen in arterial and mixed-venous blood. The
assumption is that the oxygen consumption is equal to the difference
between therates at which oxygen flows to, and away from, the tissues:

oxygen consumption
= cardiac output X arterial [O,] — cardiac output X mixed-venous [O,]
= cardiac output X (arterial [O,] — mixed-venous [O2]),

where the square brackets indicate concentrations. From this is derived the
Fick Principle formula:

oxygen consumption
arterial [O,] — mixed-venous [O,]

cardiac output = (1.3)

Re-expressed in terms of units, this becomes:

mlO,/min _ ml O,  1blood

- % _ -
ml Oz/1blood min =~ mlO, Iblood/min

cardiac output =

Note two points. First, mistakes may be avoided if the substances (oxygen
and blood) are specified in association with the units (‘ml O,/1blood’ rather
than‘ml/1’). Second, thetwoitemsinthebottomline ofequation 1.3 have the
same unitsand arelumped togetherin the treatment of units. Actually, since
one is subtracted from the other, it is a necessity that they share the same
units. Indeed, if one finds oneself trying to add or subtract quantities with
different units, then one should be forced torecognize that the calculationis
going astray.

We turn now to the mechanical work that is done when an object is lifted
and when blood is pumped. When a force acts over a distance, the mechani-
cal work done is equal to the product of force and distance. Force may be
expressed in newtons and distance in metres. Therefore, work may be
expressed in N m, the product of the two, butalso in joules, since 1] =1Nm
(Table 1.1). Conversion to calories, etc. is also possible, but the main point
here is something else. When an object is lifted, the work is done against
gravity, the force being equal (and opposite) to the object’s weight. Weights
arecommonlyexpressed as ‘g’ or ‘kg’, butthese areactuallymeasures of mass
and not of force, whereas the word ‘weight’ should strictly be used for the
downward force produced by gravity acting on mass. A mass of 1 kg maybe
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more properly spoken ofashavingaweight of 1 kg-force. Weight depends on
the strength of gravity, the latter being expressed in terms of g, the gravita-
tional acceleration. This is less on the Moon than here, and it is variable on
the Earth in the third significant figure, but for the purpose of defining ‘kg-
force’ the value used is 9.807 m/s?, with 1 kg-force being 9.807 N (Table 1.1).
This distinction between mass and weight is essential to the procedures
advocated hereforanalysingequationsin terms of units and including units
in calculations to avoid error.

Inrelation to the pumping of blood, the required relationship is not ‘work
equals force times distance’, but ‘work equals increase in pressure times
volume pumped’. If unsure of the latter relationship, can one check that it
makes sense in terms of units? The analysis needs to be in terms of SI units,
not, say, calories, mmHg and litres. Areas are expressed as m?, and volumes
asm3. Accordingly:

N
work (J) = pressure X volume = N/m2 X m3 = s Xm3=Nm=].

Next we have a situation requiring the definition of the newton as 1 kg m/s2.
The pressure due to a head of fluid, e.g. in blood at the bottom of a vertical
blood vessel, is calculated as pgh, where p is the density of the fluid, gis the
gravitational acceleration (9.807 m/s?) and his the height of fluid. To check
that this expression really yields units of pressure (N/m?), we write:

kg

kg m
h=—"X—Xm=—">
rg m3 s m s?

Recallingthat 1N = 1kgm/s?, we now write:

N k 1 k
pressure =, = gm - _ %8

2 "m?2 ms?

whichis the same expression as before.

There are some quantities for which the units are not particularly memor-
able for most of us, including peripheral resistance and the solubility coeffi-
cients for gasesinliquids. Appropriate units may be found by analysis of the
equations in which they occur. Peripheral resistance is discussed in Section
4.3, while here we consider the case of gas solubility coefficients, and spe-
cifically the solubility coefficient of oxygen in body fluids such as blood
plasma.The concentration of oxygeninsimplesolution, [O.], increases with
the partial pressure, Po,, and with the solubility coefficient, Sp,:
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[O2] = SOZPOZ- (1.4)

The concentration may be wanted in ml O,/1 fluid or in mmol/l], with the
partial pressure being specified in mmHg, kPa or atmospheres, but let us
choose mmol/land mmHg. Rearranging equation 1.4 we see that Sp, equals
the ratio [O.]/ Po,, so that the compatible solubility coefficient is found by
writing:

[02] mmol 1 mmol/l _
P, 1 mmHg ~ mmHg mmol/l per mmHg or mmol/l mmHg.

To reinforce the theme of how to avoid errors, note what happens if an
incompatible form of solubility coefficient is used in a calculation. In differ-
ent reference works, solubility coefficients may be found in such forms as
‘ml/1peratmosphere’, ‘mmol/(1Pa)’, etc., aswellasmmol/l permmHg. If the
first of these versions were to be used in a calculation together with a gas
pressure expressed in mmHg, then the units of concentration would work
outas:

ml O,/1 fluid

X Hg=ml Hg/ (1 flui here).
atmosphere mmHg =ml O, mmHg/ (I fluid atmosphere)

Theneed to think again would atonce be apparent.

The above illustrations have variously involved SI and non-SI units in
accordance with need and convenience, but other methods of analysis are
sometimes appropriate that areless specific about units, atleastin the early
stages. It is mainly to avoid complicating this chapter that a description of
‘dimensional analysis’is consigned to Notes and Answers, note 1.3B, butitis
alsoless generally useful than unitanalysis. Welook nextatdiffusion toillus-
trate aslightly different approach in which the choice of units is deferred.

Suppose that an (uncharged) substance S diffuses from region 1 to region
2 along a diffusion distance d and through a cross-sectional area a. The
(uniform) concentrations of S in the two regions are respectively [S]; and
[S].. Therate of diffusion is given by the following equation:

rate = ([S]; — [S]2) X a/d X D, (1.5)

where D is the ‘diffusion coefficient’. The appropriate units for D may be
found by rearranging the equation and proceeding as follows:
rate d rate % distance

D= X = .
[Sl; =[Sl a concentrations area
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Therate of diffusionis theamountof S diffusing per unitoftimeand concen-
trations are amounts of S per unit of volume. Therefore:

_amount volume % distance
time  amount area

Following the practice adopted above, the various items in the right-hand
expression could have been given in terms of kg, s, m3, m? and m, and that
approach would be valid. Diffusion coefficients are in fact commonly given
ascm?/s,soletus nowspecify distance, area and volume in terms of cm, cm?
and cm3, and time in seconds. Then the expression becomes:

amount cm?® cm  cm?

units for D=
S amount cm? S

Note that it is irrelevant here how the amount of substance is expressed,
whetheritbein g, mmol, etc. For another form of diffusion coefficient, relat-
ingto gas partial pressures, see Notes and Answers, note 1.3C.
Itmustbeacknowledged finally thatsome equations arenotsensiblyana-
lysed in terms of units. These are empirically derived formulae that have no
establishedtheoreticalbasis. Forexample, thereareformulaethatrelatevital
capacity, in litres, to age in years and body height in centimetres; there is no
way of combining units of time and length to obtain units of volume. One
mustrememberthisgeneralpointtoavoid beingpuzzled sometimes, butitis
alsotruethattheanalysisofanempiricalequationintermsofunitsordimen-
sionscansometimesleadtoitsrefinementandtotheoreticalunderstanding.

Conclusions

Although the main theme here is the avoidance of error by consideration of
units, ithasalso provided a contextinwhich tointroduce various commonly
used formulae. In case these have obscured the ideas pertinent to the main
theme, itmaybe helpful to summarize thoseideas here.

1. Units can be combined, manipulated and cancelled like algebraic
symbols.

2. The two sides of an equation must balance in terms of units as well
as numerically.

3. If a formula calls for quantities to be expressed in particular units,
then mistakes in this regard are preventable by writing them out as
part of the calculation.
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4. When quantities of more than one substance are involved, it is
usually advisable to specify these along with the units, writing, for
example, ‘ml O,/ml blood’ rather than simply ‘ml/ml’ (which
cancels, unhelpfully, to 1).

5. Quantities expressed in differing units cannot be combined by
addition or subtraction.

6. Attention to units may prevent quantities from being
inappropriately combined in other ways too (multiplied instead of
divided, for example). Indeed it may suggest the right way of
calculating something when other forms of reasoning falter.

7. Analysis of units may provide a partial check on half-remembered
formulae.

8. Appropriate units for unfamiliar quantities can be found by
analysing the equations in which they occur.

9. Weight (force) must be distinguished from mass (quantity).

10. Analysis of units sometimes requires knowledge that 1 N =
1 kg m/s2.

11. Units on the two sides of an equation may not balance if the
relationship is empirical and has no theoretical basis.

To these ideas may be added two others, relating to indices and logarithms,
thatemerge in the next Section.

12. Exponents (indices) must be dimensionless, i.e. they can have no
units.

13. Strictly it is not possible to take the logarithm of a number that has
dimensions or units, although there are situations in which it is
acceptable to do so.

Practice in unit analysis

Readerswishingto practise unit analysis mightlike to try the following exer-
cises (some relating to physics rather than physiology). Help is given Notes
and Answers.

1. If SI units for viscosity are unfamiliar, find them by analysing
Poiseuille’s equation. This relates the rate of flow of fluid, i.e.
volume per unit time, in a cylindrical tube (e.g. blood in a blood
vessel) to viscosity, to the radius and length of the tube and to the
difference in hydrostatic pressure between its two ends:
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radius?*
viscosity X length ’

flow rate « pressure difference X (1.6)

2. Einstein’s ‘E= mc?’ is well known. Treating energy, mass and
velocity in terms of SI units, show that the two sides of the
equation are compatible.

3. If‘RT/zF’ is already familiar in relation to the Nernst equation,
analyse it in terms of units. Its components are given in Appendix
A, while the units for the whole expression are ‘volts’. For this
exercise, use the versions of R and Fthat involve calories.
Appendix A also gives Fin terms of coulombs; I have seen it given
in physics textbooks as ‘coulombs’, ‘coulombs/equivalent’ and
‘coulombs/volt equivalent’, and this suggests another exercise. I
give F as coulombs/volt equivalent, but is that correct? More
specifically, do the relationships discussed in Section 7.6 then
work out correctly in terms of units?

4. If the formula for calculating the period of a simple pendulum was
once known, but is now forgotten, try reconstructing it by unit
analysis, albeit partially, given only that the period increases with
pendulum length and decreases with g.

1.4 Analysis of units in expressions involving exponents (indices)

Two main points are made here in relation to the unit analysis of equations
containing exponents, one concerning the exponents themselves and the
otherhavingto dowith other constants. At the same time, the opportunityis
taken to say alittle about exponential time courses and allometric relation-
ships. The basic rules for working with exponents (indices) are given in
AppendixB.

Thefirstpointis simplythat exponents mustbe dimensionless quantities;
theycannothaveunits. Thus, ‘32 eggs’ is meaningful, but ‘32 ¢sss’ isnot. While
the 2 in 32 eggs is a simple number, exponents can also be expressions con-
taining two or more variables that do have units — such as 3#?, for example.
This is satisfactory provided that the units cancel out. Thus, 3(4 eggs/2 eggs)
equals 32. As a more serious example, and one commonly encountered in
physiology, the simplest kinds of exponential time course are described by
equations of the form:

Y= Yo e’“, (17)
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where Yis the variable in question, ¢is time (in seconds, say), Y, is the the
value of Ywhen t= 0 and kis a constant (the ‘rate constant’, often negative)
with units of time~! (here s—! or 1/s). The ehas its usual meaning, anumber
closeto2.718. Heretheunitsin kfcancelout (i.e.s/s = 1). An alternative to e
inequation1.7is e’"wherethe commonlyused symbol r(tau) isequalto 1/k,
and is called the ‘time constant’. This has the same units as ¢, so that ¢/ 7, like
kt,isdimensionless.

The second pointis one that could be harmlesslyignored (asitis by many
physiologists) wereitnot thatI have put so much emphasis on unit analysis.
It concerns certain kinds of empirical relationship, as opposed to relation-
ships founded in theory. Countless physiological and anatomical measure-
ments have been made on mammals of different sizes, from shrews to
whales, and the relationships between these and body mass have been
explored. (Inrelation to purely human physiology, one may likewise explore
relationships in individuals of differing size.) In very many cases the vari-
able, Y, has been found to depend on body mass, M, in accordance with this
equation:

Y=a M, (1.8)

where aand bare constants. There is always some statistical scatter in these
so-called ‘allometric’ relationships, with consequent uncertainty about the
best values of the constants. To start with a case that gives no problem with
unitanalysis, itappears thatheartmassisnear-enough exactly proportional
to M over seven orders of magnitude, such that Y= 0.006 M'-°, with both
massesinkg. (Thisimplies thatthe heart makesup about0.6% of body mass
over the full size range.) There is no difficulty with units here, the ‘0.006’
havingnone. To see how problems can arise, consider next the case of skele-
tal mass.

As Galileo pointed outin 1637, relative skeletal mass should increase with
body mass, atleastinland mammals, if the largest are not to collapse under
their own weight (or the smallest are not to be burdened with extra bone).
Hereis an equation that has been fitted to data on dry skeletal mass (Prange
etal.,,1979):

skeletal mass (kg) = 0.061 M09, (1.9)

Nowthere is a difficulty, for M*-29 has units ofkg!-°® and this suggests that the
‘0.061” has units ofkg—9-99 (with some uncertainty due to scatter in the data).
This makes no obvious sense. A solution is to divide M by some reference
mass, mostconveniently1kg,sothattheequationbecomes,inthelattercase:
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M 1.09
skeletal mass (kg) = 0.061 [lkg} . (1.10)

Unlike M, the ratio M/ (1 kg) is dimensionless. On this basis, the ‘0.061’ isin
kg, like skeletal mass. Put more generally, the constant a in equation 1.8
comes to have the same units as Y. Usually this rather pedantic procedure is
notexplicitlyfollowed and noharmresults. Thereis more on allometricrela-
tionshipsin Sections 1.5,3.10,3.12and 6.16.

1.5 Logarithms

Physiologists use logarithms in a variety of contexts, notably in relation to
membrane potentials (Nernst equation), acid-base balance (pH,
Henderson-Hasselbalch equation), sensory physiology (Weber—Fechner
‘law’) and graphical analysis (of exponential time courses, allometry, dose-
response curves). Since logarithms now play a much smaller part in school
mathematics than formerly, they are explained in Appendix B. The main
purpose of this Section is to say a little more about their use in the contexts
just mentioned, but it concludes by returning briefly to the topic of rough
calculation. Given the emphasis I have placed on unit analysis earlier in the
chapter, Imust first make acommentrelating to that.

Onthematterofunits,itshouldbenoted thatstrictlyone canonlytakelog-
arithms of dimensionless numbers, i.e. quantities that lack units. I say
‘strictly’ because peopledo commonlyfloutthisrule, and dosowithoutcon-
sequentdifficulties or opprobrium.Thus, the elementary,and oldest, defini-
tion of pH is that it equals —logio[H*], where [H*] is the concentration of
hydrogen ions in mol/l, the units being simply ignored in the calculation.
The definitionisinfactan oversimplification (Section 8.1), butwe can move
just one step towards a better definition by dividing [H*] by a standard con-
centration, [H*]s,of 1 mol/l{sothatpHisdefined as —logio([H*]/[H*])}.The
units of concentration are thus removed, while the number is unaffected
(seethe treatment of indices in Section 1.4). This exemplifies a general solu-
tion to the problem of takinglogarithms of a quantity that has units: instead
ofignoring them, one divides the quantity by some reference value, usually
with a numerical value of 1. The next paragraph refers to logarithms of
certain quantities Yand M; for propriety, these may be regarded as each
divided by areference quantity of one unit.

Oneuseforlogarithmsisin the graphical analysis of exponential and allo-
metric relationships (equations 1.7 and 1.8). In the case of equation 1.7, a
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graph of In Y (=logeY) against ¢ yields a straight line of gradient k.
Alternatively, a graph of logioY against ¢ gives a straight line of gradient
klogioe.AnexampleisshowninFigure5.4.Inthecaseofequation1.8,agraph
oflog Yagainstlog Myields a straightline of gradient b.

Actually, there is sometimes another reason for plotting logarithms in
these contexts. This is notably true in relation to the allometry of mammals
ofwidelyvaryingsize for, on alinear scale, itis simply too hard to show com-
fortably the masses of shrews, whales, and all mammals in between. To cope
with that great range of masses, one may plotlog M (ignoring the mass units
to do so), or else show actual values of M, using a logarithmic scale (e.g.
showing, say,0.1kg, 1kg, 10kg, etc.atequallyspacedintervals). Logarithmic
scales are often used, atleast partly for the same reason, for displaying drug
concentrations (for dose-response curves).

Returning to the subject of hydrogen ion concentrations, these too vary
over ahugerange of magnitudes, and thisis onereason why people prefer to
work with pH. Thus, 10-* and 10-8 mol/l water translate to pH 4 and pH 8
respectively. Sound intensities likewise vary enormously, making the loga-
rithmic decibel scale convenient for the same reason. The decibel scale ties
in with the Weber-Fechner law, the tendency for sensation to vary (not
always exactly) with thelogarithm of stimulus intensity.

In line with the logarithmic nature of pH, the Henderson-Hasselbalch
equation, relating pH to Pco, and bicarbonate concentration, is usually for-
mulated inlogarithmic terms (see Notes and Answers):

[HCO3]
[COz] ’

pH=pK:' +log (1.11)
wherepK;'isadissociation constant. (Itwillbeapparentsoonwhythe equa-
tionisexpressed thisway, rather than more usefullyasinequation8.1, where
SPco,replaces [CO2].)

The pH meter responds linearly to log [H*] (as if it were a sense organ
obeying the Weber-Fechner law). This is because the electrical potential
across the glass membrane of the electrode, Ey, depends, atequilibrium, on
the hydrogen concentrations (or rather activities) on its two sides in accor-
dance with the Nernstequation:

_RT, [H'],
T F N H

Ex (1.12)

(R, Tand Fare often described simply as ‘having their usual values’; they are
given in Appendix A. z is the valency of the hydrogen ion, i.e. 1.) The sub-
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scripts1and 2 denotethetwo sides of themembrane. The pH ontheinside of
the glass electrode is constant. This description of the pH electrode is inci-
dental, but the Nernst equation is essential to the understanding of cell
membrane potentials and ion transport, and it is in these contexts that the
equation is more often encountered. Here it is reformulated for the equilib-
rium potential of potassium (at 37 °C):

(K*]
(K],

Ex (mV) = 61.5 log (1.13)
Note that we have here the logarithm of a ratio, the ratio of two quantities
expressedinidentical units, i.e. [K*]; and [K*],. The sameistrue ofequations
1.11and 1.12. Suchratiosare dimensionless, so that thereisno problemhere
of taking the logarithms of quantities that have units. However, a further
point can be made in this connection. Note that the expression log
([K*11/[K*]2) isequal to (log [K*]; — log [K*],); if the firstis valid, so too is the
latter. Where there is a difference between two logarithms like that, the
impropriety of oneis cancelled out by the impropriety of the other.

Finally, we return to the subject of approximate arithmetic. In Appendix B
thereisabriefcommentonthe effectsoncalculationsofinaccuracies occur-
ring in logarithmic terms. (Question: how wrong might [H*] be if pH is only
accuratetotwo decimal places?) Appendix B also emphasizes the usefulness
of remembering that log;, 2 is close to 0.30. Let us explore an example.
Equations 1.11,1.12 and 1.13 each include the logarithm of a concentration
ratio. If this ratio starts with a value A, and then doubles to 24, then the loga-
rithm of theratio increases by 0.30 (becauselog2A =1log2 + log A). Likewise,
halving the ratio decreases its logarithm by 0.30. With the Henderson-
Hasselbalch equation in mind, we can therefore see, without further calcu-
lation, that doubling of [HCO3~] or halving of [CO»] should raise the pH by
0.30.Since [CO,] isproportional to Pco,, itisalso true thathalving Pco, would
raisethe pH by 0.30. Let us put thisinto the context of an approximate calcu-
lation thatdoes not evenrequire the back of an envelope:

Question: At constant Pco,, could a rise in bicarbonate concentration from
20 mM to 30 mM explain a rise in pH from 7.10 to 7.43?

Answer: No — even a doubling of concentration only leads to a rise of
0.3 unit.



