PATTERN FORMATION AND DYNAMICS IN NONEQUILIBRIUM SYSTEMS

Many exciting frontiers of science and engineering require understanding of the spatiotemporal properties of sustained nonequilibrium systems such as fluids, plasmas, reacting and diffusing chemicals, crystals solidifying from a melt, heart muscle, and networks of excitable neurons in brains.

This introductory textbook for graduate students in biology, chemistry, engineering, mathematics, and physics provides a systematic account of the basic science common to these diverse areas. This book provides a careful pedagogical motivation of key concepts, discusses why diverse nonequilibrium systems often show similar patterns and dynamics, and gives a balanced discussion of the role of experiments, simulation, and analytics. It contains numerous illustrative worked examples, and over 150 exercises.

This book will also interest scientists who want to learn about the experiments, simulations, and theory that explain how complex patterns form in sustained nonequilibrium systems.

MICHAEL CROSS is a Professor of Theoretical Physics at the California Institute of Technology, USA. His research interests are in nonequilibrium and nonlinear physics including pattern formation, chaos theory, nanomechanical systems, and condensed matter physics, particularly the theory of liquid and solid helium.

HENRY GREENSIDE is a Professor in the Department of Physics at Duke University, USA. He has carried out research in condensed matter physics, plasma physics, nonequilibrium pattern formation, and theoretical neurobiology. He is also involved with outreach programs to stimulate interest in science and physics at junior high school and high school levels.
“This book by Cross and Greenside presents a comprehensive introduction to an important area of natural science, and assembles in one volume the essential conceptual, theoretical, and experimental tools a serious student will need to obtain a modern understanding of pattern formation outside of equilibrium. The masterful 50-page Introduction lays out the essential questions and provides motivation to the reader to explore the subsequent chapters, beginning with simple ideas and growing progressively in mathematical sophistication and physical depth. Careful attention is paid to the relationship between the theoretical methods and controlled laboratory experiments or numerical simulations. I can highly recommend this book to any student or researcher interested in a deepened understanding of nonequilibrium spatiotemporal patterns.”

Pierre Hohenberg, New York University

“This book gives an excellent didactic introduction to pattern formation in spatially extended systems. It can serve both as the basis for an advanced undergraduate or graduate course as well as a reference. It is one of those books that will never outlive its usefulness. It is a must for anyone interested in nonlinear, nonequilibrium physics.”

Eberhard Bodenschatz, MPI for Dynamics and Self-Organization, University of Goettingen, Cornell University

“This book fills a long-standing need, and is certain to be an instant classic. The physics of pattern forming systems is diverse but the theoretical core of the subject, along with many of the most important applications, can be learned from this splendid book. It is bound to be a key text for courses, as well as a much cited reference.”

Stephen Morris, University of Toronto
To our families

Katy, Colin and Lynn

Peyton, Arthur and Noel
Contents

Preface

1 Introduction

1.1 The big picture: why is the Universe not boring? 2
1.2 Convection: a first example of a nonequilibrium system 3
1.3 Examples of nonequilibrium patterns and dynamics 10
 1.3.1 Natural patterns 10
 1.3.2 Prepared patterns 20
 1.3.3 What are the interesting questions? 35
1.4 New features of pattern-forming systems 38
 1.4.1 Conceptual differences 38
 1.4.2 New properties 43
1.5 A strategy for studying pattern-forming nonequilibrium systems 44
1.6 Nonequilibrium systems not discussed in this book 48
1.7 Conclusion 49
1.8 Further reading 50

2 Linear instability: basics

2.1 Conceptual framework for a linear stability analysis 57
2.2 Linear stability analysis of a pattern-forming system 63
 2.2.1 One-dimensional Swift–Hohenberg equation 63
 2.2.2 Linear stability analysis 64
 2.2.3 Growth rates and instability diagram 67
2.3 Key steps of a linear stability analysis 69
2.4 Experimental investigations of linear stability 70
 2.4.1 General remarks 70
 2.4.2 Taylor–Couette instability 74
2.5 Classification for linear instabilities of a uniform state 75
 2.5.1 Type-I instability 77
 2.5.2 Type-II instability 79
 2.5.3 Type-III instability 80
2.6 Role of symmetry in a linear stability analysis 81
 2.6.1 Rotationally invariant systems 82
 2.6.2 Uniaxial systems 84
 2.6.3 Anisotropic systems 86
 2.6.4 Formal discussion 86
2.7 Conclusions 88
2.8 Further reading 88

3 Linear instability: applications 96
 3.1 Turing instability 96
 3.1.1 Reaction–diffusion equations 97
 3.1.2 Linear stability analysis 99
 3.1.3 Oscillatory instability 108
 3.2 Realistic chemical systems 109
 3.2.1 Experimental apparatus 109
 3.2.2 Evolution equations 110
 3.2.3 Experimental results 116
 3.3 Conclusions 119
 3.4 Further reading 120

4 Nonlinear states 126
 4.1 Nonlinear saturation 129
 4.1.1 Complex amplitude 130
 4.1.2 Bifurcation theory 134
 4.1.3 Nonlinear stripe state of the Swift–Hohenberg equation 137
 4.2 Stability balloons 139
 4.2.1 General discussion 139
 4.2.2 Busse balloon for Rayleigh–Bénard convection 147
 4.3 Two-dimensional lattice states 152
 4.4 Non-ideal states 158
 4.4.1 Realistic patterns 158
 4.4.2 Topological defects 160
 4.4.3 Dynamics of defects 164
 4.5 Conclusions 165
 4.6 Further reading 166
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Models</td>
<td>173</td>
</tr>
<tr>
<td>5.1</td>
<td>Swift–Hohenberg model</td>
<td>175</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Heuristic derivation</td>
<td>176</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Properties</td>
<td>179</td>
</tr>
<tr>
<td>5.1.3</td>
<td>Numerical simulations</td>
<td>183</td>
</tr>
<tr>
<td>5.1.4</td>
<td>Comparison with experimental systems</td>
<td>185</td>
</tr>
<tr>
<td>5.2</td>
<td>Generalized Swift–Hohenberg models</td>
<td>187</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Non-symmetric model</td>
<td>187</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Nonpotential models</td>
<td>188</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Models with mean flow</td>
<td>188</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Model for rotating convection</td>
<td>190</td>
</tr>
<tr>
<td>5.2.5</td>
<td>Model for quasicrystalline patterns</td>
<td>192</td>
</tr>
<tr>
<td>5.3</td>
<td>Order-parameter equations</td>
<td>192</td>
</tr>
<tr>
<td>5.4</td>
<td>Complex Ginzburg–Landau equation</td>
<td>196</td>
</tr>
<tr>
<td>5.5</td>
<td>Kuramoto–Sivashinsky equation</td>
<td>197</td>
</tr>
<tr>
<td>5.6</td>
<td>Reaction–diffusion models</td>
<td>199</td>
</tr>
<tr>
<td>5.7</td>
<td>Models that are discrete in space, time, or value</td>
<td>201</td>
</tr>
<tr>
<td>5.8</td>
<td>Conclusions</td>
<td>201</td>
</tr>
<tr>
<td>5.9</td>
<td>Further reading</td>
<td>202</td>
</tr>
<tr>
<td>6</td>
<td>One-dimensional amplitude equation</td>
<td>208</td>
</tr>
<tr>
<td>6.1</td>
<td>Origin and meaning of the amplitude</td>
<td>211</td>
</tr>
<tr>
<td>6.2</td>
<td>Derivation of the amplitude equation</td>
<td>214</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Phenomenological derivation</td>
<td>214</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Deduction of the amplitude-equation parameters</td>
<td>217</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Method of multiple scales</td>
<td>218</td>
</tr>
<tr>
<td>6.2.4</td>
<td>Boundary conditions for the amplitude equation</td>
<td>219</td>
</tr>
<tr>
<td>6.3</td>
<td>Properties of the amplitude equation</td>
<td>221</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Universality and scales</td>
<td>221</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Potential dynamics</td>
<td>224</td>
</tr>
<tr>
<td>6.4</td>
<td>Applications of the amplitude equation</td>
<td>226</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Lateral boundaries</td>
<td>226</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Eckhaus instability</td>
<td>230</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Phase dynamics</td>
<td>234</td>
</tr>
<tr>
<td>6.5</td>
<td>Limitations of the amplitude-equation formalism</td>
<td>237</td>
</tr>
<tr>
<td>6.6</td>
<td>Conclusions</td>
<td>238</td>
</tr>
<tr>
<td>6.7</td>
<td>Further reading</td>
<td>239</td>
</tr>
<tr>
<td>7</td>
<td>Amplitude equations for two-dimensional patterns</td>
<td>244</td>
</tr>
<tr>
<td>7.1</td>
<td>Stripes in rotationally invariant systems</td>
<td>246</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Amplitude equation</td>
<td>246</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Boundary conditions</td>
<td>248</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1.3</td>
<td>Potential</td>
<td>249</td>
</tr>
<tr>
<td>7.1.4</td>
<td>Stability balloon</td>
<td>250</td>
</tr>
<tr>
<td>7.1.5</td>
<td>Phase dynamics</td>
<td>252</td>
</tr>
<tr>
<td>7.2</td>
<td>Stripes in anisotropic systems</td>
<td>253</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Amplitude equation</td>
<td>253</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Stability balloon</td>
<td>254</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Phase dynamics</td>
<td>255</td>
</tr>
<tr>
<td>7.3</td>
<td>Superimposed stripes</td>
<td>255</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Amplitude equations</td>
<td>256</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Competition between stripes and lattices</td>
<td>261</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Hexagons in the absence of field-inversion symmetry</td>
<td>264</td>
</tr>
<tr>
<td>7.3.4</td>
<td>Spatial variations</td>
<td>269</td>
</tr>
<tr>
<td>7.3.5</td>
<td>Cross-stripe instability</td>
<td>270</td>
</tr>
<tr>
<td>7.4</td>
<td>Conclusions</td>
<td>272</td>
</tr>
<tr>
<td>7.5</td>
<td>Further reading</td>
<td>273</td>
</tr>
<tr>
<td>8</td>
<td>Defects and fronts</td>
<td>279</td>
</tr>
<tr>
<td>8.1</td>
<td>Dislocations</td>
<td>281</td>
</tr>
<tr>
<td>8.1.1</td>
<td>Stationary dislocation</td>
<td>283</td>
</tr>
<tr>
<td>8.1.2</td>
<td>Dislocation dynamics</td>
<td>285</td>
</tr>
<tr>
<td>8.1.3</td>
<td>Interaction of dislocations</td>
<td>289</td>
</tr>
<tr>
<td>8.2</td>
<td>Grain boundaries</td>
<td>290</td>
</tr>
<tr>
<td>8.3</td>
<td>Fronts</td>
<td>296</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Existence of front solutions</td>
<td>296</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Front selection</td>
<td>303</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Wave-number selection</td>
<td>307</td>
</tr>
<tr>
<td>8.4</td>
<td>Conclusions</td>
<td>309</td>
</tr>
<tr>
<td>8.5</td>
<td>Further reading</td>
<td>309</td>
</tr>
<tr>
<td>9</td>
<td>Patterns far from threshold</td>
<td>315</td>
</tr>
<tr>
<td>9.1</td>
<td>Stripe and lattice states</td>
<td>317</td>
</tr>
<tr>
<td>9.1.1</td>
<td>Goldstone modes and phase dynamics</td>
<td>318</td>
</tr>
<tr>
<td>9.1.2</td>
<td>Phase diffusion equation</td>
<td>320</td>
</tr>
<tr>
<td>9.1.3</td>
<td>Beyond the phase equation</td>
<td>327</td>
</tr>
<tr>
<td>9.1.4</td>
<td>Wave-number selection</td>
<td>331</td>
</tr>
<tr>
<td>9.2</td>
<td>Novel patterns</td>
<td>337</td>
</tr>
<tr>
<td>9.2.1</td>
<td>Pinning and disorder</td>
<td>338</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Localized structures</td>
<td>340</td>
</tr>
<tr>
<td>9.2.3</td>
<td>Patterns based on front properties</td>
<td>342</td>
</tr>
<tr>
<td>9.2.4</td>
<td>Spatiotemporal chaos</td>
<td>345</td>
</tr>
<tr>
<td>9.3</td>
<td>Conclusions</td>
<td>352</td>
</tr>
<tr>
<td>9.4</td>
<td>Further reading</td>
<td>353</td>
</tr>
</tbody>
</table>
Contents

Oscillatory patterns 358

10.1 Convective and absolute instability 360

10.2 States arising from a type-III-o instability 363

10.2.1 Phenomenology 363

10.2.2 Amplitude equation 365

10.2.3 Phase equation 368

10.2.4 Stability balloon 370

10.2.5 Defects: sources, sinks, shocks, and spirals 372

10.3 Unidirectional waves in a type-I-o system 379

10.3.1 Amplitude equation 380

10.3.2 Criterion for absolute instability 382

10.3.3 Absorbing boundaries 383

10.3.4 Noise-sustained structures 384

10.3.5 Local modes 386

10.4 Bidirectional waves in a type-I-o system 388

10.4.1 Traveling and standing waves 389

10.4.2 Onset in finite geometries 390

10.4.3 Nonlinear waves with reflecting boundaries 392

10.5 Waves in a two-dimensional type-I-o system 393

10.6 Conclusions 395

10.7 Further reading 396

Excitable media 401

11.1 Nerve fibers and heart muscle 404

11.1.1 Hodgkin–Huxley model of action potentials 404

11.1.2 Models of electrical signaling in the heart 411

11.1.3 FitzHugh–Nagumo model 413

11.2 Oscillatory or excitable 416

11.2.1 Relaxation oscillations 419

11.2.2 Excitable dynamics 420

11.3 Front propagation 421

11.4 Pulses 424

11.5 Waves 426

11.6 Spirals 430

11.6.1 Structure 430

11.6.2 Formation 436

11.6.3 Instabilities 437

11.6.4 Three dimensions 439

11.6.5 Application to heart arrhythmias 439

11.7 Further reading 441
12 Numerical methods 445

12.1 Introduction 445
12.2 Discretization of fields and equations 447
 12.2.1 Finitely many operations on a finite amount of data 447
 12.2.2 The discretization of continuous fields 449
 12.2.3 The discretization of equations 451
12.3 Time integration methods for pattern-forming systems 457
 12.3.1 Overview 457
 12.3.2 Explicit methods 460
 12.3.3 Implicit methods 465
 12.3.4 Operator splitting 470
 12.3.5 How to choose the spatial and temporal resolutions 473
12.4 Stationary states of a pattern-forming system 475
 12.4.1 Iterative methods 476
 12.4.2 Newton’s method 477
12.5 Conclusion 482
12.6 Further reading 485

Appendix 1 Elementary bifurcation theory 496
Appendix 2 Multiple-scales perturbation theory 503
Glossary 520
References 526
Index 531
Preface

This book is an introduction to the patterns and dynamics of sustained nonequilibrium systems at a level appropriate for graduate students in biology, chemistry, engineering, mathematics, physics, and other fields. Our intent is for the book to serve as a second course that continues from a first introductory course in nonlinear dynamics. While a first exposure to nonlinear dynamics traditionally emphasizes how systems evolve in time, this book addresses new questions about the spatiotemporal structure of nonequilibrium systems. Students and researchers who succeed in understanding most of the material presented here will have a good understanding of many recent achievements and will be prepared to carry out original research on related topics.

We can suggest three reasons why nonequilibrium systems are worthy of study. First, observation tells us that most of the Universe consists of nonequilibrium systems and that these systems possess an extraordinarily rich and visually fascinating variety of spatiotemporal structure. So one answer is sheer basic curiosity: where does this rich structure come from and can we understand it? Experiments and simulations further tell us that many of these systems—whether they be fluids, granular media, reacting chemicals, lasers, plasmas, or biological tissues—often have similar dynamical properties. This then is the central scientific puzzle and challenge: to identify and to explain the similarities of different nonequilibrium systems, to discover unifying themes, and, if possible, to develop a quantitative understanding of experiments and simulations.

A second reason for studying nonequilibrium phenomena is their importance to technology. Although the many observed spatiotemporal patterns are often interesting in their own right, an understanding of such patterns—e.g. being able to predict when a pattern will go unstable or knowing how to select a pattern that maximizes some property like heat transport—is often important technologically. Representative examples are growing pure crystals, designing a high-power coherent laser, improving yield and selectivity in chemical synthesis, and inventing new
electrical control techniques to prevent epilepsy or a heart attack. In these and other cases such as forecasting the weather or predicting earthquakes, improvements in the design, control, and prediction of nonequilibrium systems are often limited by our incomplete understanding of sustained nonequilibrium dynamics.

Finally, a third reason for learning the material in this book is to develop specific conceptual, mathematical, and numerical skills for understanding complex phenomena. Many nonequilibrium systems involve continuous media whose quantitative description is given in terms of nonlinear partial differential equations. The solutions of such equations can be difficult to understand (e.g. because they may evolve nonperiodically in time and be simultaneously disordered in space), and questions such as “Is the output from this computer simulation correct?,” “Is this simulation producing the same results as my experimental data?” or “Is experimental noise relevant here?” may not be easily answered. As an example, one broadly useful mathematical technique that we discuss and use several times throughout the book is multiscale perturbation theory, which leads to so-called “amplitude equations” that provide a quantitatively useful reduction of complex dynamics. We also discuss the role of numerical simulation, which has some advantages and disadvantages compared to analytical theory and experimental investigation.

To help the reader master the various conceptual, mathematical, and numerical skills, the book has numerous worked examples that we call etudes. By analogy to a musical etude, which is a composition that helps a music student master a particular technique while also learning a piece of artistic value, our etudes are one- to two-page long worked examples that illustrate a particular idea and that also try to provide a non-trivial application of the idea.

Although this book is intended for an interdisciplinary audience, it is really a physics book in the following sense. Many of the nonequilibrium systems in the Universe, for example a germ or a star, are simply too complex to analyze directly and so are ill-suited for discovering fundamental properties upon which a general quantitative understanding can be developed. In much of this book, we follow a physics tradition of trying to identify and study simple idealized experimental systems that also have some of the interesting properties observed in more complex systems.

Thus instead of studying the exceedingly complex dynamics of the Earth’s weather, which would require in turn understanding the effects of clouds, the solar wind, the coupling to oceans and ice caps, the topography of mountains and forest, and the effects of human industry, we instead focus our experimental and theoretical attention on enormously simplified laboratory systems. One example is Rayleigh–Bénard convection, which is a fluid experiment consisting of a thin horizontal layer of a pure fluid that is driven out of equilibrium by a vertical temperature difference that is constant in time and uniform in space. Another is a mixture of reacting and
diffusing chemicals in a thin layer of gel, with reservoirs of chemicals to sustain
the reaction. The bet is then that to understand aspects of what is going on in the
weather or in an epileptic brain, it will be useful to explore some basic questions
first for convection and other well-controlled laboratory systems. Similarly, as we
discuss later in the book, there are conceptual, mathematical, and computational
advantages if one studies simplified and reduced mathematical models such as the
Swift–Hohenberg and complex Ginzburg–Landau equations when trying to under-
stand the much more difficult partial differential equations that describe physical
systems quantitatively. The experiments, models, simulations, and theory discussed
in this book – especially the numerous comparisons of theory and simulation with
experiment – will give the reader valuable insights and confidence about how to
think about the more complex systems that are closer to their interests.

As background, readers of this book should know the equivalent of an introduc-
tory nonlinear dynamics course at the level of Strogatz’s book [99]. Readers should
feel comfortable with concepts such as phase space, dissipation, attractors (fixed
points, limit cycles, tori, and strange attractors), basins of attractors, the basic bifur-
cations (super- and subcritical, saddle-node, pitchfork, transcritical, Hopf), linear
stability analysis of fixed points, Lyapunov exponents, and fractal dimensions. A
previous exposure to thermodynamics and to fluid dynamics at an undergraduate
level will be helpful but is not essential and can be reviewed as needed. The reader
will need to be competent in using multivariate calculus, linear algebra, and Fourier
analysis at a junior undergraduate level. Several appendices in this book provide
concise reviews of some of this prerequisite material, but only on those parts that
are important for understanding the text.

There is too much material in this book for a single semester class so we give here
some suggestions of what material could be covered, based on several scenarios of
how the book might be used.

The first six chapters present the basic core material and should be covered in
most classes for which this book is a main text. By the end of Chapter 6, most of
the main ideas have been introduced, at least qualitatively. The successive chapters
present more advanced material that can be discussed selectively. For example,
those particularly interested in the systematic treatment of stationary patterns may
choose to complete the semester by studying all or parts of Chapters 7 and 8, which
provide quantitative discussions of two-dimensional patterns and localized struc-
tures, and Chapter 9 which is a more qualitative discussion of stationary patterns far
from onset. For a less mathematical approach, it is possible to leave out the more
technical Chapters 7 and 8 and move straight to Chapter 9 although we recommend
including the first three subsections of Section 7.3 on the central question of the
competition between stripes, two-dimensional lattices, and quasiperiodic patterns
(these sections can be read independently of the remainder of the chapter). If the
Preface

Interest is more in dynamical phenomena, such as oscillations, propagating pulses, and waves (which may be the case if applying the ideas to signalling phenomena in biology is a goal), the class may choose to skip Chapters 7–9, pausing briefly to study Section 8.3 on fronts, and move immediately to Chapters 10 and 11 on oscillatory patterns and excitable media. Numerical simulations are vital to many aspects of the study of pattern formation, and to nonlinear dynamics in general, and so any of the above suggestions may include all or parts of Chapter 12.

In learning about nonequilibrium physics and in writing this book, the authors have benefited from discussions with many colleagues and students. We would like to thank Philip Bayly, Bob Behringer, Eshel Ben-Jacob, Eberhard Bodenschatz, Helmut Brand, Hugues Chaté, Peilong Chen, Elizabeth Cherry, Keng-Hwee Chiam, Bill Coughran Jr., Peter Daniels, David Egolf, Bogdan Epureanu, Paul Fischer, Jerry Gollub, Roman Grigoriev, James Gunton, Craig Henriquez, Alain Karma, Kihong Kim, Paul Kolodner, Lorenz Kramer, Andrew Krystal, Eugenia Kuo, Ming-Chih Lai, Herbert Levine, Ron Lifshitz, Manfred Lücke, Paul Manneville, Dan Meiron, Steve Morris, Alan Newell, Corey O’Hern, Mark Paul, Werner Pesch, Joel Reisman, Hermann Riecke, Sam Safran, Janet Scheel, Berk Sensoy, Boris Shraiman, Eric Siggia, Matt Strain, Cliff Surko, Harry Swinney, Shigeyuki Tajima, Gerry Tesauro, Yuhai Tu, Wim van Saarloos, and Scott Zoldi. We would like to express our appreciation to John Bechhoefer, Roman Grigoriev, Pierre Hohenberg, Steven Morris, and Wim Van Saarloos for helpful comments on early drafts of this book. And we would like especially to thank Guenter Ahlers and Pierre Hohenberg for many enjoyable and inspiring discussions over the years.

We would also like to thank the Department of Energy, the National Science Foundation, and the National Institute of Health for supporting our research over many years. We also thank the Aspen Center for Physics and the Institute of Theoretical Physics, Santa Barbara, where the authors were able to work productively on parts of this book.

Henry Greenside would like to thank his wife, Noel Greis, for her patience, support, and good cheer while he was working on this book.

Readers can find supplementary material on the book website at

http://mcc.caltech.edu/pattern-formation-book/,
or

A list of errata will also be available on these websites.

We would be grateful to readers if they could forward to us comments they might have about the material and its presentation. These comments can be e-mailed to us at mcc@caltech.edu or hsg@phy.duke.edu.