Nonlinear Time Series Models in Empirical Finance

Although many of the models commonly used in empirical finance are linear, the nature of financial data suggests that nonlinear models are more appropriate for forecasting and accurately describing returns and volatility. The enormous number of nonlinear time series models appropriate for modelling and forecasting economic time series models makes choosing the best model for a particular application daunting. This classroom-tested advanced undergraduate and graduate textbook – the most up-to-date and accessible guide available – provides a rigorous treatment of recently developed nonlinear models, including regime-switching models and artificial neural networks. The focus is on the potential applicability for describing and forecasting financial asset returns and their associated volatility. The models are analysed in detail and are not treated as ‘black boxes’ and are illustrated using a wide range of financial data, drawn from sources including the financial markets of Tokyo, London and Frankfurt.

PHILIP HANS FRANSES is based at Erasmus University, Rotterdam. He has published widely in journals, and his books include Time Series Models for Business and Economic Forecasting (Cambridge University Press, 1998).

DICK VAN DIJK is based at Erasmus University, Rotterdam. He is the author of several journal articles on econometrics.
Nonlinear Time Series Models in Empirical Finance

Philip Hans Franses
and
Dick van Dijk
To our parents

Bas and Jessie
and
Gerrit and Justa
Contents

List of figures ix
List of tables xi
Preface xv

1 Introduction

1.1 Introduction and outline of the book 1
1.2 Typical features of financial time series 5

2 Some concepts in time series analysis

2.1 Preliminaries 20
2.2 Empirical specification strategy 27
2.3 Forecasting returns with linear models 44
2.4 Unit roots and seasonality 51
2.5 Aberrant observations 61

3 Regime-switching models for returns

3.1 Representation 71
3.2 Estimation 83
3.3 Testing for regime-switching nonlinearity 100
3.4 Diagnostic checking 108
3.5 Forecasting 117
3.6 Impulse response functions 125
3.7 On multivariate regime-switching models 132

4 Regime-switching models for volatility

4.1 Representation 136
4.2 Testing for GARCH 157
4.3 Estimation 170
Contents

4.4 Diagnostic checking 182
4.5 Forecasting 187
4.6 Impulse response functions 197
4.7 On multivariate GARCH models 200

5 Artificial neural networks for returns 206
5.1 Representation 207
5.2 Estimation 215
5.3 Model evaluation and model selection 222
5.4 Forecasting 234
5.5 ANNs and other regime-switching models 237
5.6 Testing for nonlinearity using ANNs 245

6 Conclusions 251

Bibliography 254
Author index 272
Subject index 277
Figures

1.1 Stock indexes – levels and returns page 7
1.2 Exchange rates – levels and returns 8
1.3 Distributions of stock index returns 11
1.4 Distributions of exchange rate returns 12
1.5 Scatterplot of daily returns on the Amsterdam stock index 14
1.6 Scatterplot of daily returns on the Frankfurt stock index 15
1.7 Scatterplot of daily returns on the London stock index 16
1.8 Scatterplot of daily returns on the British pound 17
1.9 Scatterplot of daily returns on the Canadian dollar 18
1.10 Scatterplot of daily returns on the Dutch guilder 19
2.1 Autocorrelations of stock index returns 31
2.2 Autocorrelations of exchange rate returns 32
2.3 Additive and innovative outliers in an AR(1) model 63
2.4 Weight functions for robust estimation 67
3.1 Logistic functions 72
3.2 Realizations from a SETAR model 73
3.3 Scatterplots for realizations from a SETAR model 74
3.4 Sequences of LR-statistics for realizations from a SETAR model 86
3.5 Absolute weekly returns on the Frankfurt stock index and regime probabilities in a Markov-Switching model 97
3.6 Weekly returns on the Dutch guilder exchange rate and weights from robust estimation of a SETAR model 99
3.7 Transition function in a STAR model for returns on the Dutch guilder exchange rate 109
3.8 Transition function in a STAR model for absolute returns on the Tokyo stock index 111
3.9 Conditional distributions for a SETAR model 123
3.10 Generalized impulse responses in a STAR model for returns on the Dutch guilder exchange rate 131
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.11</td>
<td>Generalized impulse responses in a STAR model for returns on the Dutch guilder exchange rate</td>
<td>131</td>
</tr>
<tr>
<td>4.1</td>
<td>News impact curves for nonlinear GARCH models</td>
<td>150</td>
</tr>
<tr>
<td>4.2</td>
<td>News impact curve for the ANST-GARCH model</td>
<td>154</td>
</tr>
<tr>
<td>4.3</td>
<td>Conditional standard deviation in nonlinear GARCH models for returns on the Tokyo stock index</td>
<td>176</td>
</tr>
<tr>
<td>4.4</td>
<td>Conditional standard deviation in GARCH(1,1) models for weekly stock index and exchange rate returns</td>
<td>179</td>
</tr>
<tr>
<td>5.1</td>
<td>Skeleton of an ANN</td>
<td>209</td>
</tr>
<tr>
<td>5.2</td>
<td>Structure of the hidden layer in an ANN</td>
<td>211</td>
</tr>
<tr>
<td>5.3</td>
<td>Architecture of the single hidden layer feedforward ANN</td>
<td>213</td>
</tr>
<tr>
<td>5.4</td>
<td>ANN and additive outliers</td>
<td>215</td>
</tr>
<tr>
<td>5.5</td>
<td>ANN and innovative outliers</td>
<td>216</td>
</tr>
<tr>
<td>5.6</td>
<td>ANN and level shifts</td>
<td>217</td>
</tr>
<tr>
<td>5.7</td>
<td>Output of hidden units in an ANN for returns on the Japanese yen exchange rate</td>
<td>224</td>
</tr>
<tr>
<td>5.8</td>
<td>Skeleton of an ANN for returns on the Japanese yen exchange rate</td>
<td>225</td>
</tr>
<tr>
<td>5.9</td>
<td>Output of hidden units in an ANN for absolute returns on the Frankfurt stock index</td>
<td>227</td>
</tr>
<tr>
<td>5.10</td>
<td>Skeleton of an ANN for absolute returns on the Frankfurt stock index</td>
<td>228</td>
</tr>
<tr>
<td>5.11</td>
<td>Moving averages for returns on the Japanese yen exchange rate</td>
<td>229</td>
</tr>
<tr>
<td>5.12</td>
<td>Output–input derivatives in an ANN for returns on the Japanese yen exchange rate</td>
<td>233</td>
</tr>
<tr>
<td>5.13</td>
<td>Output–input derivatives in an ANN for absolute returns on the Frankfurt stock index</td>
<td>233</td>
</tr>
<tr>
<td>5.14</td>
<td>Impulse responses in an ANN for absolute returns on the Frankfurt stock index</td>
<td>238</td>
</tr>
</tbody>
</table>
Tables

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Summary statistics for stock returns</td>
<td>9</td>
</tr>
<tr>
<td>1.2</td>
<td>Summary statistics for exchange rate returns</td>
<td>10</td>
</tr>
<tr>
<td>1.3</td>
<td>Correlation between squared returns at day t and returns at day $t-1$</td>
<td>18</td>
</tr>
<tr>
<td>2.1</td>
<td>Average ranks of linear models to forecast stock returns according to MSPE, 1991–1997</td>
<td>46</td>
</tr>
<tr>
<td>2.2</td>
<td>Average ranks of linear models to forecast stock returns according to MAPE, 1991–1997</td>
<td>47</td>
</tr>
<tr>
<td>2.3</td>
<td>Average ranks of linear models to forecast stock returns according to MedSPE, 1991–1997</td>
<td>48</td>
</tr>
<tr>
<td>2.4</td>
<td>Forecast comparison of linear models with random walk – stock returns, squared prediction errors, 1991–1997</td>
<td>49</td>
</tr>
<tr>
<td>2.5</td>
<td>Forecast comparison of linear models with random walk – stock returns, absolute prediction errors, 1991–1997</td>
<td>50</td>
</tr>
<tr>
<td>2.6</td>
<td>Performance of linear models in forecasting sign of stock returns, 1991–1997</td>
<td>52</td>
</tr>
<tr>
<td>2.7</td>
<td>Daily means and variances of stock index returns</td>
<td>59</td>
</tr>
<tr>
<td>2.8</td>
<td>Periodic autocorrelations of stock returns</td>
<td>61</td>
</tr>
<tr>
<td>3.1</td>
<td>AIC for AR(p) models estimated on simulated SETAR series</td>
<td>78</td>
</tr>
<tr>
<td>3.2</td>
<td>AIC values for SETAR models for weekly returns on the Dutch guilder exchange rate</td>
<td>88</td>
</tr>
<tr>
<td>3.3</td>
<td>SETAR estimates for weekly percentage returns on the Dutch guilder exchange rate</td>
<td>89</td>
</tr>
<tr>
<td>3.4</td>
<td>Parameter estimates for a MSW model for weekly absolute returns on the Frankfurt stock index</td>
<td>96</td>
</tr>
<tr>
<td>3.5</td>
<td>p-values for HCC test of linearity against a SETAR alternative for weekly returns on the Dutch guilder exchange rate</td>
<td>106</td>
</tr>
<tr>
<td>3.6</td>
<td>p-values of LM-type test for STAR nonlinearity for weekly returns on the Dutch guilder exchange rate</td>
<td>107</td>
</tr>
</tbody>
</table>
List of tables

3.7 Parameter estimates for a STAR model for weekly returns on the Dutch guilder exchange rate
3.8 p-values of LM-type test for STAR nonlinearity for weekly absolute returns on the Tokyo stock index
3.9 Parameter estimates for a STAR model for weekly absolute returns on the Tokyo stock index
3.10 Diagnostic tests of a STAR model estimated for weekly returns on the Dutch guilder exchange rate
3.11 Diagnostic tests of a STAR model estimated for absolute weekly returns on the Tokyo stock index
3.12 Forecast evaluation of a STAR model for weekly returns on the Dutch guilder exchange rate
4.1 Testing for ARCH in weekly stock index returns
4.2 Testing for ARCH in weekly exchange rate returns
4.3 Testing for asymmetric ARCH effects in weekly stock index and exchange rate returns
4.4 Testing for nonlinear ARCH in weekly stock index returns
4.5 Testing for nonlinear ARCH in weekly exchange rate returns
4.6 Testing for ARCH and QARCH in simulated SETAR series
4.7 Rejection frequencies of standard and robust tests for (nonlinear) ARCH in the presence of outliers
4.8 Properties of standard and robust tests for ARCH in the presence of patchy outliers
4.9 Estimates of nonlinear GARCH(1,1) models for weekly returns on the Tokyo stock index
4.10 Estimates of GARCH(1,1) models for weekly stock index and exchange rate returns
4.11 Percentiles of the distribution of the outlier detection statistic in GARCH(1,1) models
4.12 Estimates of GARCH(1,1) models for weekly returns on the Amsterdam and New York stock indexes, before and after outlier correction
4.13 Diagnostic tests for estimated GARCH models for weekly stock index and exchange rate returns
4.14 Forecast evaluation of nonlinear GARCH models for weekly returns on the Tokyo stock index, as compared to the GARCH (1,1) model
4.15 Forecast evaluation of nonlinear GARCH models for weekly returns on the Tokyo stock index
List of tables

4.16 Testing for common ARCH effects in weekly stock index and exchange rate returns 205
5.1 Performance of ANNs when series are generated from an AR(2) model contaminated with AOs 218
5.2 Performance of ANNs when series are generated from an AR(2) model contaminated with IOs 219
5.3 Performance of ANNs applied to weekly returns on the Japanese yen exchange rate 223
5.4 Performance of ANNs applied to absolute weekly returns on the Frankfurt stock index 226
5.5 Performance of ANNs with technical trading rule applied to weekly returns on Japanese yen 231
5.6 Performance of ANNs when series are generated from a SETAR model 242
5.7 Performance of ANNs when series are generated from a Markov-Switching model 243
5.8 Performance of ANNs when series are generated from a bilinear model 244
5.9 Performance of ANNs when series are generated from a GARCH(1,1) model 245
5.10 Testing for nonlinearity in weekly stock index and exchange rate returns with ANN-based tests 248
5.11 Testing for nonlinearity in weekly absolute stock index and exchange rate returns with ANN-based tests 249
A casual glance at the relevant literature suggests that the amount of nonlinear time series models that can be potentially useful for modelling and forecasting economic time series is enormous. Practitioners facing this plethora of models may have difficulty choosing the model that is most appropriate for their particular application, as very few systematic accounts of the pros and cons of the different models are available. In this book we provide an in-depth treatment of several recently developed models, such as regime-switching models and artificial neural networks. We narrow our focus to examining their potential applicability for describing and forecasting financial asset returns and their associated volatilities. The models are presented in substantial detail and are not treated as ‘black boxes’. All models are illustrated on data concerning stock markets and exchange rates.

Our book can be used as a textbook for (advanced) undergraduate and graduate students. In fact, this book emerges from our own lecture notes prepared for courses given at the Econometric Institute, Rotterdam and the Tinbergen Institute graduate school. It must be stressed, though, that students must have had a solid training in mathematics and econometrics and should be familiar with at least the basics of time series analysis. We do review some major concepts in time series analysis in the relevant chapters, but this can hardly be viewed as a complete introduction to the field. We further believe that our book is most useful for academics and practitioners who are confronted with an overwhelmingly large literature and who want to have a first introduction to the area.

We thank the Econometric Institute at the Erasmus University Rotterdam and the Tinbergen Institute (Rotterdam branch) for providing a stimulating research and teaching environment. We strongly believe that ‘learning by doing’ (that is, learning how to write this book by teaching on the subject first) helped to shape the quality of this book. We thank all our co-authors on joint papers, elements of which are used in this book. We would specifically like to mention André Lucas, whose econometrics skills are very
Preface

impressive. Also, we thank Ashwin Rattan at Cambridge University Press for his support.

Finally, we hope that the reader enjoys reading this book as much as we enjoyed writing it.

Rotterdam, August 1999