Contents

Preface
page xi
1 Molecular Rydberg states
1.1 The nature of Rydberg states
1.2 Organization of the text
2 The quantum defect picture
2.1 Introduction
2.2 Coulomb wavefunctions
2.3 Single-channel quantization
2.4 Coupled channels
3 *Ab-initio* quantum defects
3.1 Traditional quantum chemistry
3.2 Constrained *ab-initio* wavefunctions
3.3 The R-matrix matching procedure
3.4 The Wigner–Eisbud R-matrix
3.5 Variational R-matrix theory
3.6 Rydberg–valence interactions
3.7 The influence of positive ion dipoles
4 Frame transformations and channel interactions
4.1 Physical assumptions
4.2 Rotational channel interactions
4.3 Vibrational channel interactions
4.4 Vibronic channel interactions
5 Competitive fragmentation
5.1 Perturbation model for diatomic species
5.2 Diatomic predissociation
Contents

5.3 Dissociative recombination and related phenomena 130
5.4 R-matrix formulation 140
5.5 Vibronically induced dissociative recombination of H_3^+ 148

6 Photo-excitation 157
6.1 Introduction 157
6.2 n-photon discrete absorption 158
6.3 Spherical tensor representation 163
6.4 Spatial selectivity 167
6.5 Resonant two-photon excitation 170
6.6 Multiphoton band structure 171
6.7 Angular momentum decoupling in high Rydberg states 177
6.8 ZEKE intensities 183

7 Photo-ionization 191
7.1 Boundary conditions and cross-sections 192
7.2 The photo-ionization matrix element 195
7.3 Integrated cross-section 199
7.4 Differential cross-section 202
7.5 Fixed molecule angular distribution 215
7.6 Resonant two-photon ionization 219
7.7 Orientation and alignment 226
7.8 Spin polarization 232

8 Manipulating Rydberg states 239
8.1 Rydberg wavepackets 239
8.2 The Stark effect 255

Appendix A MQDT normalization 273
A.1 Open channels 273
A.2 Closed channels 275

Appendix B Alternative MQDT representations 278
B.1 Standard representation 278
B.2 Sine–cos representation 279
B.3 Mixed representation 280

Appendix C Rotational frame transformations 282
C.1 Hund’s cases for diatomic molecules 282
C.2 Parity considerations 284
C.3 Basis functions 285
C.4 Diatomic frame transformations 286
C.5 Asymmetric tops 290
Contents

<table>
<thead>
<tr>
<th>Appendix D</th>
<th>Optical transition and photo-ionization amplitudes</th>
<th>295</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.1</td>
<td>Discrete absorption amplitudes</td>
<td>295</td>
</tr>
<tr>
<td>D.2</td>
<td>Photo-ionization amplitudes</td>
<td>297</td>
</tr>
<tr>
<td>D.3</td>
<td>Dipole radial matrix elements and Cooper minima</td>
<td>303</td>
</tr>
<tr>
<td>Appendix E</td>
<td>Generalized MQDT representation</td>
<td>307</td>
</tr>
<tr>
<td>Appendix F</td>
<td>Notation</td>
<td>310</td>
</tr>
<tr>
<td>F.1</td>
<td>Angular momenta</td>
<td>310</td>
</tr>
<tr>
<td>F.2</td>
<td>Reduced matrix elements</td>
<td>310</td>
</tr>
<tr>
<td>F.3</td>
<td>Other special brackets</td>
<td>312</td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td>314</td>
</tr>
</tbody>
</table>