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From particles to fields

To introduce some fundamental concepts of field theory, we begin by considering two simple model

systems – a one-dimensional “caricature” of a solid, and a freely propagating electromagnetic wave.

As well as exemplifying the transition from discrete to continuous degrees of freedom, these examples

introduce the basic formalism of classical and quantum field theory, the notion of elementary excitations,

collective modes, symmetries, and universality – concepts which will pervade the rest of the text.

One of the more remarkable facts about condensed matter physics is that phenomenology of

fantastic complexity is born out of a Hamiltonian of comparative simplicity. Indeed, it is not

difficult to construct microscopic “condensed matter Hamiltonians” of reasonable generality.

For example, a prototypical metal or insulator might be described by the many-particle

Hamiltonian, H = He +Hi +Hei where

He =
∑

i

p2
i

2m
+
∑

i<j Vee(ri − rj),

Hi =
∑

I

P2
I

2M
+
∑

I<J Vii(RI −RJ),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭Hei =

∑
iI Vei(RI − ri).

(1.1)

Here, ri (RI) denote the coordinates of the valence electrons (ion cores) and He, Hi, and Hei

describe the dynamics of electrons, ions and the interaction of electrons and ions, respec-

tively (see Fig. 1.1). Of course, the Hamiltonian Eq. (1.1) can be made “more realistic,” for

example by remembering that electrons and ions carry spin, adding disorder, or introduc-

ing host lattices with multi-atomic unit-cells. However, for developing our present line of

thought the prototype H will suffice.

The fact that a seemingly innocuous Hamiltonian like Eq. (1.1) is capable of generating the

vast panopticon of metallic phenomenology can be read in reverse order: one will normally

not be able to make theoretical progress by approaching the problem in an “ab initio”

manner, i.e. by an approach that treats all microscopic constituents as equally relevant

degrees of freedom.

How then can successful analytical approaches be developed? The answer to this question

lies in a number of basic principles inherent in generic condensed matter systems.
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2 From particles to fields

ri

RI

Figure 1.1 A one-dimensional cartoon of a (metallic) solid. Positively charged ions located at
positions RI are surrounded by a conduction electron cloud (electron coordinates denoted by ri).
While the motion of the ions is massively constrained by the lattice potential Vii (indicated by the
solid line and its harmonic approximation shown dashed), t he dynamics of the electrons is affected
by their mutual interaction (Vee) and their interaction with the core ions (Vei).

1. Structural reducibility: Not all components of the Hamiltonian (1.1) need to be treated

simultaneously. For example, when the interest is foremost in the vibrational motion of

the ion lattice, the dynamics of the electron system can often be neglected or, at least,

be treated in a simplistic manner. Similarly, much of the character of the dynamics of

the electrons is independent of the ion lattice, etc.

2. In the majority of condensed matter applications, one is interested not so much in the

full profile of a given system, but rather in its energetically low-lying dynamics. This is

motivated partly by practical aspects (in daily life, iron is normally encountered at room

temperature and not at its melting point), and partly by the tendency of large systems

to behave in a “universal” manner at low temperatures. Here universality implies that

systems differing in microscopic detail (e.g. different types of interaction potentials, ion

species, etc.) exhibit common collective behavior. As a physicist, one will normally seek

for unifying principles in collective phenomena rather than to describe the peculiarities of

individual species. However, universality is equally important in the practice of condensed

matter theory. It implies, for example, that, at low temperatures, details of the functional

form of microscopic interaction potentials are of secondary importance, i.e. that one may

employ simple model Hamiltonians.

3. For most systems of interest, the number of degrees of freedom is formidably large with

N = O(1023). However, contrary to first impressions, the magnitude of this figure is

rather an advantage. The reason is that in addressing condensed matter problems we

may make use of the concepts of statistics and that (precisely due to the largeness of

N) statistical errors tend to be negligibly small.1

4. Finally, condensed matter systems typically possess a number of intrinsic symmetries.

For example, our prototype Hamiltonian above is invariant under simultaneous trans-

lation and rotation of all coordinates, which expresses the global Galilean invariance of

the system (a continuous set of symmetries). Spin rotation invariance (continuous) and

1 The importance of this point is illustrated by the empirical observation that the most challenging systems in
physical sciences are of medium (and not large) scale, e.g., metallic clusters, medium-sized nuclei or large atoms
consist of O(101–102) fundamental constituents. Such problems are well beyond the reach of few-body quantum
mechanics while not yet accessible to reliable statistical modeling. Often the only viable path to approaching
systems of this type is massive use of phenomenology.
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1.1 Classical harmonic chain: phonons 3

time-reversal invariance (discrete) are other examples of frequently encountered sym-

metries. The general importance of symmetries cannot be over emphasized: symmetries

entail the conservation laws that simplify any problem. Yet in condensed matter physics,

symmetries are “even more” important. A conserved observable is generally tied to an

energetically low-lying excitation. In the universal low-temperature regimes in which we

will typically be interested, it is precisely the dynamics of these low-level excitations that

governs the gross behavior of the system. In subsequent sections, the sequence “symme-

try �→ conservation law �→ low-lying excitations” will be encountered time and again. At

any rate, identification of the fundamental symmetries will typically be the first step in

the analysis of a solid state system.

To understand how these basic principles can be used to formulate and explore “effective

low-energy” field theories of solid state systems we will begin our discussion by focussing on

the harmonic chain; a collection of atoms bound by a harmonic potential. In doing so, we

will observe that the universal characteristics encapsulated by the low-energy dynamics2 of

large systems relate naturally to concepts of field theory.

1.1 Classical harmonic chain: phonons

Returning to the prototype Hamiltonian (1.1) discussed earlier, let us focus on the dynamical

properties of the positively charged core ions that constitute the host lattice of a crystal.

For the moment, let us neglect the fact that atoms are quantum objects and treat the ions

as classical entities. To further simplify the problem, let us consider an atomic chain rather

than a generic d-dimensional solid. In this case, the positions of the ions can be specified

by a sequence of coordinates with an average lattice spacing a. Relying on the reduction

principle (1) we will first argue that, to understand the behavior of the ions, the dynamics

of the conduction electrons are of secondary importance, i.e. we will set He = Hei = 0.

At strictly zero temperature, the system of ions will be frozen out, i.e. the one-dimensional

ion coordinates RI ≡ R̄I = Ia settle into a regularly spaced array. Any deviation from

a perfectly regular configuration has to be paid for by a price in potential energy. For

low enough temperatures (principle 2), this energy will be approximately quadratic in the

small deviation from the equilibrium position. The reduced low-energy Hamiltonian of

our system then reads

H =
N∑

I=1

[
P 2
I

2M
+

ks
2
(RI+1 −RI − a)2

]
, (1.2)

where the coefficient ks determines the steepness of the lattice potential. Notice that H can

be interpreted as the Hamiltonian of N point-like particles of mass M elastically connected

by springs with spring constant ks (see Fig. 1.2).

2 In this text, we will focus on the dynamical behavior of large systems, as opposed to their static structural
properties. In particular, we will not address questions related to the formation of definite crystallographic
structures in solid state systems.
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4 From particles to fields
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Figure 1.2 Toy model of a one-dimensional solid; a chain of elastically bound massive point parti-
cles.

Lagrangian formulation and equations of motion

Joseph–Louis Lagrange 1736–
1813
A mathematician who excelled
in all fields of analysis, number
theory, and celestial mechanics.
In 1788 he published Mécanique
Analytique, which summarised all the work done in
the field of mechanics since the time of Newton,
and is notable for its use of the theory of differen-
tial equations. In it he transformed mechanics into
a branch of mathematical analysis.

What are the elementary low-

energy excitations of the system? To

answer this question we might, in

principle, attempt to solve Hamil-

ton’s equations of motion. Indeed,

since H is quadratic in all coordi-

nates, such a program is, in this

case, feasible. However, we must bear

in mind that few of the problems

encountered in general solid state

physics enjoy this property. Further,

it seems unlikely that the low-energy dynamics of a macroscopically large chain – which

we know from our experience will be governed by large-scale wave-like excitations – is

adequately described in terms of an “atomistic” language; the relevant degrees of freedom

will be of a different type. We should, rather, draw on the basic principles 1–4 set out

above. Notably, we have so far paid attention neither to the intrinsic symmetry of the

problem nor to the fact that N is large.

Crucially, to reduce a microscopic model to an effective low-energy theory, the Hamil-

tonian is often not a very convenient starting point. Usually, it is more efficient to start

out from an action. In the present case, the Lagrangian action corresponding to a time

interval [0, t0] is defined as S =
∫ t0
0

dt L(R, Ṙ), where (R, Ṙ) ≡ {RI , ṘI} symbolically rep-

resents the set of all coordinates and their time derivatives. The Lagrangian L related to

the Hamiltonian (1.2) is given by

L = T − U =
N∑

I=1

[
MṘ2

I

2
− ks

2
(RI+1 −RI − a)2

]
, (1.3)

where T and U denote respectively the kinetic and potential energy.

Since we are interested in the properties of the large-N system, we can expect boundary

effects to be negligible. This being so, we are at liberty to impose on our atomic chain the

topology of a circle, i.e. we adopt periodic boundary conditions identifying RN+1 = R1.

Further, anticipating that the effect of lattice vibrations on the solid is weak (i.e. long-

range atomic order is maintained) we may assume that the deviation of the ions from their
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1.1 Classical harmonic chain: phonons 5

equilibrium position is small (|RI(t)−R̄I | � a), and the integrity of the solid is maintained.

With RI(t) = R̄I + φI(t) (φN+1 = φ1) the Lagrangian (1.3) assumes the simplified form

L =
N∑

I=1

[
M

2
φ̇2
I −

ks
2
(φI+1 − φI)

2

]
.

To make further progress, we will now make use of the fact that we are not concerned with

the behavior of our system on “atomic” scales. (In any case, for such purposes a modeling

like the one above would be much too primitive!) Rather, we are interested in experimentally

observable behavior that manifests itself on macroscopic length scales (principle 2). For

example, one might wish to study the specific heat of the solid in the limit of infinitely

many atoms (or at least a macroscopically large number, O(1023)). Under these conditions,

microscopic models can usually be substantially simplified (principle 3). In particular, it is

often permissible to subject a discrete lattice model to a so-called continuum limit, i.e.

to neglect the discreteness of the microscopic entities and to describe the system in terms

of effective continuum degrees of freedom.

RI

φI

φ (x)In the present case, taking a continuum limit

amounts to describing the lattice fluctuations φI

in terms of smooth functions of a continuous vari-

able x (see the figure where the [horizontal] dis-

placement of the point particles has been plotted

along the vertical). Clearly such a description makes sense only if relative fluctuations on

atomic scales are weak (for otherwise the smoothness condition would be violated). However,

if this condition is met – as it will be for sufficiently large values of the stiffness constant

ks – the continuum description is much more powerful than the discrete encoding in terms

of the “vector” {φI}. All steps that we will need to take to go from the Lagrangian to

concrete physical predictions will be much easier to formulate.

Introducing continuum degrees of freedom φ(x), and applying a first-order Taylor expan-

sion,3 let us define

φI → a1/2φ(x)
∣∣∣
x=Ia

, φI+1 − φI → a3/2∂xφ(x)
∣∣∣
x=Ia

,
N∑

I=1

→ 1

a

∫ L

0

dx,

where L = Na. Note that, as defined, the functions φ(x, t) have dimensionality [length]1/2.

Expressed in terms of the new degrees of freedom, the continuum limit of the Lagrangian

then reads

L[φ] =

∫ L

0

dx L(φ, ∂xφ, φ̇), L(φ, ∂xφ, φ̇) =
m

2
φ̇2 − ksa

2

2
(∂xφ)

2, (1.4)

3 Indeed, for reasons that will become clear, higher-order contributions to the Taylor expansion are immaterial in
the long-range continuum limit.
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6 From particles to fields

T

φ

S
S[φ]

M

Figure 1.3 Schematic visualization of a field: a mapping φ from a base manifold M into a target
space T (in this case, T are the real numbers; but, in general, T can be more complicated). A
functional assigns to each φ a real number S[φ]. The grid embedded into M indicates that fields in
condensed matter physics arise as continuum limits of discrete mappings.

where the Lagrangian density L has dimensionality [energy]/[length] and we have desig-

nated the particle mass by the more common symbol m ≡ M . Similarly, the classical action

assumes the continuum form

S[φ] =

∫
dt L[φ] =

∫
dt

∫ L

0

dx L(φ, ∂xφ, φ̇). (1.5)

We have thus succeeded in abandoning the N -point particle description in favor of one

involving continuous degrees of freedom, a (classical) field. The dynamics of the latter

are specified by the functionals L and S, which represent the continuum generalizations

of the discrete classical Lagrangian and action, respectively.

INFO The continuum variable φ is our first encounter with a field. Before proceeding with

our example, let us pause to make some preliminary remarks on the general definition of these

objects. This will help to place the subsequent discussion of the atomic chain into a broader

context. Formally, a field is a smooth mapping

φ : M → T,

z �→ φ(z),

from a certain manifold M ,4 often called the “base manifold,” into a “target” or “field manifold”

T (see Fig. 1.3).5 In our present example, M = [0, L]× [0, t] ⊂ R
2 is the product of intervals in

space and time, and T = R. In fact, the factorization M ⊂ R × T into a space-like manifold

R multiplied by a one-dimensional time-like manifold T is inherent in most applications of

condensed matter physics.6

4 If you are unfamiliar with the notion of manifolds (for a crash course, see page 537), think of M and T as subsets
of some vector space. For the moment, this limitation won’t do any harm.

5 In some (rare) cases it becomes necessary to define fields in a more general sense (e.g. as sections of mathematical
objects known as fiber bundles). However, in practically all condensed matter applications the more restrictive
definition above will suffice.

6 By contrast, the condition of Lorentz invariance implies the absence of such factorizations in relativistic field
theory. In classical statistical field theories, i.e. theories probing the thermodynamic behavior of large systems,
M is just space-like.
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1.1 Classical harmonic chain: phonons 7

However, the individual factors R and T may, of course, be more complex than in our proto-

typical problem above. As to the target manifold, not much can be said in general; depending

on the application, the realizations of T range from real or complex numbers over vector spaces

and groups to the “fanciest objects” of mathematical physics.

In applied field theory, fields appear not as final objects but rather as input to functionals (see

Fig. 1.3). Mathematically, a functional S : φ �→ S[φ] ∈ R is a mapping that takes a field as its

argument and maps it into the real numbers. The functional profile S[φ] essentially determines

the character of a field theory. Notice that the argument of a functional is commonly indicated

in square brackets [ ].

While these formulations may appear unnecessarily abstract, remembering the mathematical

backbone of the theory often helps to avoid confusion. At any rate, it takes some time and practice

to get used to the concept of fields and functionals. Conceptual difficulties in handling these

objects can be overcome by remembering that any field in condensed matter physics arises as

the limit of a discrete mapping. In the present example, the field φ(x) is obtained as a continuum

approximation of the discrete vector {φI} ∈ R
N ; the functional L[φ] is the continuum limit of

the function L : RN → R, etc. While in practical calculations fields are usually easier to handle

than their discrete analogs, it is sometimes helpful to think about problems of field theory in

a discrete language. Within the discrete picture, the mathematical apparatus of field theory

reduces to finite-dimensional calculus.

Although Eq. (1.4) contains the full information about the model, we have not yet learned

much about its actual behavior. To extract concrete physical information from Eq. (1.4) we

need to derive equations of motion. At first sight, it may not be entirely clear what is

meant by the term “equations of motion” in the context of an infinite-dimensional model:

the equations of motion relevant for the present problem are obtained as the generaliza-

tion of the conventional Lagrange equations of N -particle classical mechanics to a model

with infinitely many degrees of freedom. To derive these equations we need to generalize

Hamilton’s extremal principle (i.e. the route from an action to the associated equations of

motion) to infinite dimensions. As a warm-up, let us briefly recapitulate how the extremal

principle works for a system with one degree of freedom.

Suppose the dynamics of a classical point particle with coordinate x(t) is described by the

classical Lagrangian L(x, ẋ), and action S[x] =
∫
dt L(x, ẋ). Hamilton’s extremal prin-

ciple states that the configurations x(t) that are actually realized are those that extremize

the action, δS[x] = 0. This means (for a substantiated discussion, see Section 1.2 below)

that, for any smooth curve t �→ y(t),

lim
ε→0

1

ε
(S[x+ εy]− S[x]) = 0. (1.6)

To first order in ε, the action has to remain invariant. Applying this condition, one finds

that it is fulfilled if and only if x satisfies Lagrange’s equation of motion

d

dt
(∂ẋL)− ∂xL = 0. (1.7)

EXERCISE Recapitulate the derivation of (1.7) from the classical action.
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8 From particles to fields

x

t

T

L

φ (x,t)

φ

εη (x,t)

Figure 1.4 Schematic showing the variation of the field associated with the action functional.
Notice that the variation εη is supposed to vanish on the boundaries of the base M = [0, L]× [0, t].

In Eq. (1.5) we are dealing with a system of infinitely many degrees of freedom, φ(x, t). Yet

Hamilton’s principle is general and we may see what happens if Eq. (1.5) is subjected to an

extremal principle analogous to Eq. (1.6). To do so, we substitute φ(x, t) → φ(x, t)+εη(x, t)

into Eq. (1.5) and require vanishing of the first-order contribution to an expansion in ε

(see Fig. 1.4). When applied to the specific Lagrangian (1.4), substituting the “varied” field

leads to

S[φ+ εη] = S[φ] + ε

∫
dt

∫ L

0

dx
(
mφ̇η̇ − ksa

2∂xφ∂xη
)
+O(ε2).

Integrating by parts and requiring that the contribution linear in ε vanishes, one obtains

lim
ε→0

1

ε
(S[φ+ εη]− S[φ]) = −

∫
dt

∫ L

0

dx
(
mφ̈− ksa

2∂2
xφ

)
η

!
= 0.

(Notice that the boundary terms vanish identically.) Now, since η was defined to be an

arbitrary smooth function, the integral above can vanish only if the factor in parentheses is

globally vanishing. Thus the equation of motion takes the form of a wave equation

(
m∂2

t − ksa
2∂2

x

)
φ = 0. (1.8)

φ+
φ–

x = vt
x = – vt

The solutions of Eq. (1.8) have the general form

φ+(x− vt) + φ−(x+ vt) where v = a
√
ks/m, and

φ± are arbitrary smooth functions of the argu-

ment. From this we can deduce that the basic low-energy elementary excitations of our

model are lattice vibrations propagating as sound waves to the left or right at a con-

stant velocity v (see the figure).7 The trivial behavior of our model is of course a direct

consequence of its simplistic definition – no dissipation, dispersion, or other non-trivial

ingredients. Adding these refinements leads to the general classical theory of lattice vibra-

tions (such as that described in the text by Ashcroft and Mermin8). Finally, notice that

7 Strictly speaking, the modeling of our system enforces a periodicity constraint φ±(x+L) = φ±(x). However, in
the limit of a large system, this aspect becomes inessential.

8 N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt–Saunders International, 1983).
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1.1 Classical harmonic chain: phonons 9

the elementary excitations of the chain have little in common with its “microscopic” con-

stituents (the atomic oscillators). Rather they are collective excitations, i.e. elementary

excitations comprising a macroscopically large number of microscopic degrees of freedom.

INFO The “relevant” excitations of a condensed matter system can, but need not, be

of collective type. For example, the interacting electron gas (a system to be discussed in detail

below) supports microscopic excitations – charged quasi-particles standing in 1:1 correspondence

with the electrons of the original microscopic system – while the collective excitations are plasmon

modes of large wavelength and engaging many electrons. Typically, the nature of the fundamental

excitations cannot be straightforwardly inferred from the microscopic definition of a model.

Indeed, the mere identification of the relevant excitations often represents the most important

step in the solution of a condensed matter problem.

Hamiltonian formulation

Sir William Rowan Hamilton
1805–65
A mathematician credited with
the discovery of quaternions,
the first non-commutative alge-
bra to be studied. He also
invented important new methods
in mechanics. (Image from W. R. Hamilton, Col-
lected Papers, vol. II, Cambridge University Press,
1940.

An important characteristic of any

excitation is its energy. How much

energy is stored in the sound waves

of the harmonic chain? To address

this question, we need to switch back

to a Hamiltonian formulation. Once

again, this is achieved by general-

izing standard manipulations from

point mechanics to the continuum.

Remembering that, for a Lagrangian

of a point particle, p ≡ ∂ẋL is the momentum conjugate to the coordinate x, let us consider

the Lagrangian density and define9

π(x) ≡ ∂L(φ, ∂xφ, φ̇)
∂φ̇(x)

, (1.9)

as the canonical momentum associated with φ (at the point x). In common with φ,

the momentum π is a continuum degree of freedom. At each space point it may take an

independent value. Notice that π(x) is nothing but the continuum generalization of the

lattice momentum PI of Eq. (1.2). (Applied to PI , a continuum approximation like φI →
φ(x) would produce π(x).) The Hamiltonian density is then defined as usual through the

Legendre transformation,

H(φ, ∂xφ, π) =
(
πφ̇− L(φ, ∂xφ, φ̇)

)∣∣∣
φ̇=φ̇(φ,π)

, (1.10)

9 In field theory literature it is popular to denote the momentum by a Greek letter.
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10 From particles to fields

from where the full Hamiltonian is obtained as H =
∫ L

0
dxH.

EXERCISE Verify that the transition L → H is a straightforward continuum generalization of

the Legendre transformation of the N -particle Lagrangian L({φI}, {φ̇I}).

Having introduced a Hamiltonian, we are in a position to determine the energy of the sound

waves. Application of Eq. (1.9) and (1.10) to the Lagrangian of the atomic chain yields

π(x, t) = mφ̇(x, t) and

H[π, φ] =

∫
dx

(
π2

2m
+

ksa
2

2
(∂xφ)

2

)
. (1.11)

Considering, say, a right-moving sound-wave excitation, φ(x, t) = φ+(x− vt), we find that

π(x, t) = −mv∂xφ+(x− vt) and H[π, φ] = ksa
2
∫
dx[∂xφ+(x− vt)]2 = ksa

2
∫
dx [∂xφ+(x)]

2,

i.e. a positive definite, time-independent expression, as one would expect.

Before proceeding, let us note an interesting feature of the energy functional: in the limit

of an infinitely shallow excitation, ∂xφ+ → 0, the energy vanishes. This sets the stage

for the last of the principles (4) hitherto unconsidered, symmetry. The Hamiltonian of

an atomic chain is invariant under simultaneous translation of all atom coordinates by a

fixed increment: φI → φI + δ, where δ is constant. This expresses the fact that a global

translation of the solid as a whole does not affect the internal energy. Now, the ground state

of any specific realization of the solid will be defined through a static array of atoms, each

located at a fixed coordinate RI = Ia ⇒ φI = 0. We say that the translational symmetry is

“spontaneously broken,” i.e. the solid has to decide where exactly it wants to rest. However,

spontaneous breakdown of a symmetry does not imply that the symmetry disappeared. On

the contrary, infinite-wavelength deviations from the pre-assigned ground state come close

to global translations of (macroscopically large portions of) the solid and, therefore, cost

a vanishingly small amount of energy. This is the reason for the vanishing of the sound

wave energy in the limit ∂xφ → 0. It is also our first encounter with the aforementioned

phenomenon that symmetries lead to the formation of soft, i.e. low-energy, excitations. A

much more systematic exposition of these connections will be given in Chapter 6.

Ludwig Boltzmann 1844–1906
A physicist whose greatest achievement was in the
development of statistical mechanics, which explains
and predicts how the properties of atoms (such as
mass, charge, and structure) determine the visible
properties of matter (such as viscosity, thermal con-
ductivity, and diffusion).

To conclude our discussion of the

classical harmonic chain, let us con-

sider the specific heat, a quantity

directly accessible in experiment. A

rough estimate of this quantity can

be readily obtained from the micro-

scopic harmonic Hamiltonian (1.2).

According to the principles of statis-

tical mechanics, the thermodynamic energy density is given by

u =
1

L

∫
dΓ e−βHH∫
dΓ e−βH

= − 1

L
∂β ln

∫
dΓ e−βH ,

where β = 1/kBT , Z ≡
∫
dΓe−βH is the Boltzmann partition function and the phase

space volume element dΓ =
∏N

I=1 dRIdPI . We will set kB = 1 throughout. The specific heat
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