Physical Gels from Biological and Synthetic Polymers

Presenting a unique perspective on the state-of-the-art of physical gels, this interdisciplinary guide provides a complete, critical analysis of the field and highlights recent developments. It shows the interconnections between the key aspects of gels, from molecules and structure through to rheological and functional properties, with each chapter focusing on a different class of gel. There is also a final chapter covering innovative systems and applications, providing the information needed to understand current and future practical applications of gels in the pharmaceutical, agricultural, cosmetic, chemical and food industries. Many research teams are involved in the field of gels, including theoreticians, experimentalists and chemical engineers, but this interdisciplinary book collates and rationalizes the many different points of view to provide a clear understanding of these complex systems for researchers and graduate students.

Madeleine Djabourov is Professor at the Ecole Supérieure de Physique et Chimie Industrielles de la Ville de Paris (ESPCI-ParisTech), in charge of thermodynamics and rheology courses. She was involved in pioneering studies on gelation and percolation initiated by Pierre-Gilles de Gennes.

Katsuyoshi Nishinari is a Special Appointment Professor at the Graduate School of Human Life Science, Osaka City University. He has investigated gels and gelling processes as part of a collaborative research group on gellan gum affiliated with the Research Group on Polymer Gels in the Society of Polymer Science, Japan.

Simon B. Ross-Murphy is currently a Visiting Professor at the University of Manchester (Materials Science) and the University of Nottingham (Biopolymer Science and Technology). He has previously been a Professor in Biopolymer Science at King's College London, and before that was at Unilever Research.

'Many innovative functional gel materials have been developed over the past decade, and our understanding of physical gels and their functionalities is advancing at a rapid pace, but so far there has been a lack of comprehensive textbooks suited to introduce graduate students, teachers and research workers into the science of physical gels. This wonderful book perfectly fills this need. Written in an elegant and accessible style with lucid concepts, plenty of examples, and spectacular figures, including the authors' original scientific works on rheology and phase transitions, the book takes the readers gently from the most elementary concepts of physical gels to the forefront of current research. The book can therefore be warmly recommended as a textbook or reference work for both undergraduate and graduate courses whether or not the readers are familiar with the subject.'

Fumihiko Tanaka, Kyoto University, Japan

'As a class of fascinating materials, physical gels hold realized and potential application in many fields. This interdisciplinary book provides basic approaches to rationally designing and fabricating a physical gel along with molecular level understanding of the gelation mechanism.'

Hongbin Zhang, Shanghai Jiao Tong University, China

'This book is a very important and original one; with 351 pages, it is devoted to a good and up to date review on physical gels. The 3 authors are well-known in this field and they are able to cover it extensively: the different mechanisms of physical gel formation, especially important in the domain of natural polysaccharides are discussed. The techniques able to characterize the gels at different scales are given in the same time as method for the gel point (sol-gel transition) determination. The cases of proteins, synthetic polymers and polysaccharides are well documented. I can recommend this book for people starting in the field of physical gels and those yet involved in the study of physical gels.'

Marguerite Rinaudo, European Synchrotron Radiation Facility (ESRF)

Physical Gels from Biological and Synthetic Polymers

MADELEINE DJABOUROV

Ecole Supérieure de Physique et Chimie Industrielles de la Ville de Paris (ESPCI-ParisTech)

KATSUYOSHI NISHINARI

Osaka City University, Japan

SIMON B. ROSS-MURPHY

University of Manchester

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Mexico City

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521769648

© Madeleine Djabourov, Katsuyoshi Nishinari and Simon B. Ross-Murphy 2013

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2013

Printed and bound in the United Kingdom by the MPG Books Group

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data Djabourov, Madeleine, 1949-Physical gels from biological and synthetic polymers / Madeleine Djabourov, Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris, Katsuyoshi Nishinari, Osaka City University, Japan, Simon B. Ross-Murphy, University of Manchester. pages cm Includes bibliographical references. ISBN 978-0-521-76964-8 (hardback) 1. Polymer colloids. I. Nishinari, Katsuyoshi. II. Ross-Murphy, S. B. III. Title. QD549.2.P64D56 2013 541'.345-dc23 2012038172

ISBN 978-0-521-76964-8 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

1

2

3

Contents

Prefe	ace	<i>page</i> ix
Intro	duction	1
1.1	Gels from colloidal and polymer networks:	
	a brief survey	1
	Structural characteristics and their study	3
	Non-physical gels	6
	Physical gels	8
1.5	Outline of the book	12
Refe	rences	16
Bibli	ography	17
Tech	niques for the characterization of physical gels	18
2.1	Introduction	18
2.2	Scattering techniques	18
2.3	Calorimetric studies	26
2.4	Microscopy of gel networks	33
2.5	Rheological characterization	40
2.6	Role of numerical simulations	52
2.7	Conclusions	61
Refe	rences	61
The s	sol-gel transition	64
3.1	Flory-Stockmayer ('classical') theory	64
3.2	Percolation model	66
3.3	Percolation and phase transitions	72
3.4	Percolation and gelation	75
3.5	Experimental investigations of gelation transitions	80
3.6	Eldridge–Ferry method	87
3.7	Critical gel concentration	88
3.8	Zipper model	90

Cambridge University Press
978-0-521-76964-8 - Physical Gels from Biological and Synthetic Polymers
Madeleine D Jabourov, Katsuyoshi Nishinari and Simon B. Ross-Murphy
Frontmatter
Moreinformation

vi	Contents	
	3.9 Liquid crystal gels	91
	3.10 Conclusions	93
	References	94
4	General properties of polymer networks	97
	4.1 Chemically cross-linked networks and gels	98
	4.2 Theories of rubber elasticity	102
	4.3 Swelling of gels	104
	4.4 Transient networks	109
	4.5 Conclusions	122
	References	122
5	lonic gels	124
	5.1 Introduction	124
	5.2 Molecular characteristics of polyelectrolytes	125
	5.3 Polyelectrolyte theories	126
	5.4 Gelation of carrageenans and gellans	127
	5.5 Gelation of alginates and pectins	144
	5.6 Xanthan	149
	5.7 Chitin and chitosan	151
	5.8 Conclusions	152
	References	152
6	Hydrophobically associated networks	156
	6.1 Introduction	156
	6.2 The hydrophobic effect	156
	6.3 Hydrophobically modified water-soluble polymers	161
	6.4 Rheology of associating polymers	167
	6.5 Interaction with surfactants	170
	6.6 Thermogelation or phase separation?	173
	6.7 Conclusions	180
	References	180
7	Helical structures from neutral biopolymers	182
	7.1 Introduction	182
	7.2 Gelatin	182
	7.3 Agarose	208
	7.4 Comparison between helical type networks	217
	7.5 Conclusions	219
	References	220

	Cont	tents	vii
8	Gelation through phase transformation in synthetic and natural polyme	rs	222
	8.1 Introduction		222
	8.2 'Crystallization'-induced gelation: poly(vinylchloride) (PVC) gela	5	223
	8.3 Gelation in the absence of crystallization		230
	8.4 Stereo-complexation and conformational changes: isotactic and		
	syndiotactic PMMA gels		239
	8.5 Cryogels of poly(vinyl alcohol) (PVA)		245
	8.6 Cryogels from polysaccharides		251
	8.7 Conclusions		253
	References		254
9	Colloidal gels from proteins and peptides		256
	9.1 Introduction		256
	9.2 Colloidal gels formed from partially denatured proteins		257
	9.3 Gels from milk proteins		265
	9.4 Fibrillar gels formed from partially denatured proteins		269
	9.5 Specific assemblies from peptides and proteins		277
	9.6 Conclusions		282
	References		282
10	Mixed gels		287
	10.1 Introduction		287
	10.2 Equilibrium thermodynamics		289
	10.3 Phase dynamics: nucleation and growth versus spinodal decomp	osition	290
	10.4 Gels involving segregative phase separation		298
	10.5 Filled gels		309
	10.6 Gels involving molecular ('synergistic') interactions		310
	10.7 Conclusions		322
	References		322
11	Innovative systems and applications		326
	11.1 Innovative systems		326
	11.2 Food and cosmetic applications		334
	11.3 Biomedical applications		336
	11.4 Conclusions		351
	References		351
	Index		353

Preface

This book is the result of both long personal friendships and a series of scientific collaborations, between the three authors. Although we have been working in this field essentially independently, as is usual we have also intersected with one another on many occasions in various parts of the globe, and visited each other's facilities. From all of this, we have come to realize that our thoughts have evolved through various aspects of this complex topic. The idea of writing a book represents some culmination of these intersections, both geographical and ideological. This, together with our will to put together our personal views and experiences to try to reflect the specific ways in which the topic has been appreciated in our original cultures and environments, has resulted in this volume.

Writing the book, which is necessarily then the synthesis of our views, has been a matter of considerable debate, because of the large area that the topic obviously covers. Even though this book reflects the overall complexity of this still-developing subject imperfectly, we feel that we have produced an appropriate survey of the present state of art. We hope that the final result could be an introduction to a larger public, but more particularly for physical chemists, condensed matter physicists and all disciplines in between, and that it will encourage other workers to adopt these topics and so to introduce their own ideas and hypotheses.

We wish to acknowledge the fruitful discussions with, and advice from, many distinguished scientists and colleagues. Among these the thoughts and encouragement of Dr Kawthar Bouchemal, Professor Walther Burchard, Professor Allan Clark, Professor Lucilla de Arcangelis, Professor Emanuela Del Gado, Professor Masao Doi, Professor Jacques Leblond, Professor Edwin Morris, Professor Kunio Nakamura, Dr Klaas te Nijenhuis, Professor Marguerite Rinaudo, Professor Fumihiko Tanaka, Professor Masayuki Tokita and Professor Peter A. Williams are especially appreciated.

We thank Mrs Trang Le Viet for her precious contribution in realizing the artwork of the book with great talent and patience, and SRM thanks Dr Adam Corrigan, University of Cambridge, for kindly providing a copy of his PhD thesis.

> Madeleine Djabourov Katsuyoshi Nishinari Simon B. Ross-Murphy