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Small-Scale Statistics and Structure of Turbulence –
in the Light of High Resolution Direct Numerical

Simulation
Yukio Kaneda and Koji Morishita

1.1 Introduction

Fully developed turbulence is a phenomenon involving huge numbers of de-
grees of dynamical freedom. The motions of a turbulent fluid are sensitive
to small differences in flow conditions, so though the latter are seemingly
identical they may give rise to large differences in the motions.1 It is difficult
to predict them in full detail.

This difficulty is similar, in a sense, to the one we face in treating systems
consisting of an Avogadro number of molecules, in which it is impossible to
predict the motions of them all. It is known, however, that certain relations,
such as the ideal gas laws, between a few number of variables such as pres-
sure, volume, and temperature are insensitive to differences in the motions,
shapes, collision processes, etc. of the molecules.

Given this, it is natural to ask whether there is any such relation in tur-
bulence. In this regard, we recall that fluid motion is determined by flow
conditions, such as boundary conditions and forcing. It is unlikely that the
motion would be insensitive to the difference in these conditions, especially
at large scales. It is also tempting, however, to assume that, in the statistics
at sufficiently small scales in fully developed turbulence at sufficiently high
Reynolds number, and away from the flow boundaries, there exist certain
kinds of relation which are universal in the sense that they are insensitive
to the detail of large-scale flow conditions. In fact, this idea underlies Kol-
mogorov’s theory (Kolmogorov, 1941a, hereafter referred as K41), and has
been at the heart of many modern studies of turbulence. Hereafter, univer-
sality in this sense is referred to as universality in the sense of K41.

Although most of the energy in turbulence resides at large scales, most of
a This work was undertaken while both authors were at Nagoya University.
1 This does not prevent satisfactory averages being measured, at least those belonging to small

scales.
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2 Kaneda & Morishita

the degrees of dynamical freedom resides in the small scales. In Fourier space,
for example, most of the Fourier modes are in the high-wavenumber range.
Hence properly understanding the nature of turbulence at small scales is
interesting, not only from the theoretical, but also from the practical point
of view, because such an understanding can be expected to be useful for
developing models of turbulence to properly reduce the degrees of freedom
to be treated.

This chapter will review studies of the nature of turbulence at small scales.
Of course, more intensive studies have been performed on this interesting
subject than we can cover here; in addition, we cannot review all of the
issues related to each study that we do cover. We present a review of a
few topics in the light of recent progress in high resolution direct numerical
simulation (DNS) of turbulence. An analysis is also made on elongated local
eddy structure and statistics. An emphasis is placed upon the Reynolds
number dependence of the statistics and on the difference between active
and non-active regions in turbulence.

1.2 Background supporting the idea of universality

1.2.1 Kolmogorov’s 4/5 law

The existence of universality in the sense of K41 has not yet been proven rig-
orously, but there is evidence supporting it. Among this is Kolmogorov’s 4/5
law (Kolmogorov, 1941c), which is derived as a consequence of the Navier–
Stokes (NS) equation governing fluid motion.

Let u = u(x, t) be an incompressible turbulent velocity field obeying the
Navier–Stokes equation,

∂

∂t
u − (u · ∇)u − 1

ρ
∇p + ν∇2u + f , (1.1)

and the incompressibility condition,

∇ · u = 0, (1.2)

where ν is the kinematic viscosity, p the pressure, f the external force per
unit mass, and ρ the fluid density.

For homogeneous and isotropic (HI) turbulence, the NS equation with
the incompressibility condition (1.2) yields the Kármán–Howarth equation
(Kármán and Howarth, 1938)

BL
3 (r) = −4

5
〈ε〉 r + 6ν

∂BL
2 (r)
∂r

+ F (r) − 3
r4

∫ r

0

∂BL
2 (r̃)
∂t

r̃4dr̃, (1.3)
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1: Small-Scale Statistics and Structure of Turbulence 3

where 〈ε〉 is the average of the rate of energy dissipation ε per unit mass,
and BL

n (r) is the nth order structure function of the longitudinal velocity
difference δuL defined as

BL
n (r) ≡

〈[
δuL(r)

]n〉
, δuL(r) ≡ [u(x + re) − u(x)] · e, (1.4)

in which e is an arbitrary unit vector. In (1.3), F is expressed in terms of
the correlation g(r) ≡ 〈[u(r + x) − u(x)] · [f(r + x) − f(x)]〉. It is shown by
simple algebra that

F (r) =
6
r4

∫ r

0
r̃G(r̃)dr̃, G(r) =

∫ r

0
r̃2g(r̃)dr̃.

If the forcing f is confined only to large scales, say ∼ L (where the symbol
∼ denotes an equality up to a coefficient of order unity), and the viscosity
ν is very small, then it is plausible to assume that in (1.3),

(i) the forcing term F (r) is negligible at r � L,
(ii) the viscosity term works only at small scales, say ∼ η, so that it is

negligible at r � η, and
(iii) the statistics is almost stationary at small scales, so that the last term

is negligible at r � L.

Under these assumptions, (1.3) yields the 4/5 law,

BL
3 (r) = −4

5
〈ε〉 r, (1.5)

for L � r � η.
Note that the 4/5 law (1.5) applies not only to the stationary but also to

the freely-decaying case, as long as one may assume (iii), in addition to (i)
and (ii), where L is to be understood appropriately, e.g., as the characteristic
length scale of the energy containing eddies.

The relation (1.5) asserts that BL
3 (r) is specified only by 〈ε〉 and r. It holds

independently of the shapes, internal structures, deformations, positions,
alignments, interactions, collision and reconnection processes, etc. of small-
scale eddies, however the term ‘eddies’ may be defined, and also of the forcing
and boundary conditions outside the range r � L, as long as (i), (ii) and
(iii) hold. (This doesn’t mean that BL

3 (r) is independent of these factors and
conditions, as they may still affect 〈ε〉: rather, the relation (1.5) means that
their influence, if any, is only through 〈ε〉.)

The relation (1.5) holds independently of these factors, just as the ideal
gas laws hold independently of the shapes, internal structures, interactions,
collision processes etc. of the molecules comprising the gas, and indepen-
dently of the shape of the container of the gas. The relation is in this sense
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4 Kaneda & Morishita
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Figure 1.1 Normalized longitudinal one-dimensional energy spectrum. The data except
those by DNS-ES are re-plotted from Tsuji (2009).

universal, and supports the idea of existence of universality in the sense of
K41.

1.2.2 Energy spectrum

More support for the existence of universality in the sense of K41 is given by
the second-order two-point velocity correlations, or, equivalently, the veloc-
ity correlation spectra observed in experiments and DNS. If the second-order
moments of u(x + r) − u(x) are universal in a certain sense at small scale,
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1: Small-Scale Statistics and Structure of Turbulence 5

r � L, then so are their spectra, i.e., their Fourier transforms with respect
to r at large k � 1/L. The converse is also true. Here L is the characteristic
length scale of the energy containing eddies. The universality of these statis-
tics is at the heart of Kolmogorov’s theory, K41 (see below). Experimental
and DNS data have been accumulated, including those of the well-known
tidal channel observation by Grant et al. (1962), according to which the
spectra under different flow conditions overlap well at high wavenumbers
under appropriate normalization (see, e.g., Monin and Yaglom, 1975).

Figure 1.1 illustrates collections of energy spectra. It shows the longi-
tudinal one-dimensional energy spectrum E11 vs. k1η in turbulent mixing
layers, boundary layers and atmospheric turbulence, at Taylor micro-scale
Reynolds numbers Rλ up to ≈ 17, 000. Here E11 satisfies〈

u2
1
〉

=
∫ ∞

0
E11(k1)dk1,

in which
〈
u2

1
〉

and k1 are respectively the mean-square fluctuation velocity
and the wavenumber component in the longitudinal direction, η ≡ (ν3/ 〈ε〉)1/4

is the Kolmogorov length scale, and Rλ ≡ u′λ/ν with 3u′2/2 = E be-
ing the total kinetic energy of the fluctuating velocity per unit mass, and
λ ≡ (15νu′2/ 〈ε〉)1/2 is the Taylor micro-scale. It also shows the spectra by
DNS (Rλ = 460) by Gotoh et al. (2002) and a series of DNS performed
on the Earth Simulator, hereafter referred to as DNS-ES, with Rλ and the
number of grid points up to approximately 1,200 and 40963, respectively
(Yokokawa et al., 2002; Kaneda et al., 2003). DNS with grid points as large
as 40963 has been also used in studies of turbulence fields, see for example
Donzis and Sreenivasan (2010) and Donzis et al. (2010).

In spite of the different flow conditions, the spectra are seen to overlap
well at large k1η, at least to the extent visible in the figure. This supports
the idea that there may be certain kinds of relations which are insensitive
to the details of flow conditions at large scales.

The overlap is in agreement with Kolmogorov’s K41 theory, according to
which E11(k1) is of the form

E11(k1)/(〈ε〉 ν5)1/4 = φ11(k1η), (1.6)

in the wavenumber range k � kL ≡ 1/L, and in particular

E11(k1) ≈ CK 〈ε〉2/3 k
−5/3
1 , (1.7)

in the inertial subrange kL � k1 � kd, where kd ≡ 1/η, the universal
function φ11 depends only on k1η, and where CK is a dimensionless universal
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6 Kaneda & Morishita

constant. In terms of the three-dimensional energy spectrum E(k), (1.7) is
equivalent to

E(k) ≈ Ko 〈ε〉2/3 k−5/3, with Ko =
55
18

CK, (1.8)

where k is the three-dimensional wavenumber. In physical space, (1.7) is
equivalent to

BL
2 (r) ≈ CR 〈ε〉2/3 r2/3, with CR =

3
2
Γ
(

1
3

)
CK, (1.9)

in the range L � r � η. The scaling r2/3 in (1.9), as well as k−5/3 in (1.7)
and (1.8), can be derived from the 4/5 law and by assuming the skewness〈

[δuL(r)]3
〉
/
〈
[δuL(r)]2

〉3/2

to be constant in the inertial subrange (Kolmogorov, 1941c).
The experimental and DNS data reported thus far suggest that CK ≈

0.5 ± 0.05 (see, e.g., Sreenivasan, 1995; Sreenivasan and Antonia, 1997),
although a close inspection of the spectra shows that they don’t agree with
(1.7) in a strict sense. Readers may refer to e.g., Tsuji (2009) for a review
of studies on this discrepancy.

One can consider at least two kinds of origins for the discrepancy:

(a) the inertial range intermittency;
(b) the behavior of the spectrum around kη ∼ 1, where the compensated

spectrum E(k)/(〈ε〉2/3 k−5/3) shows a “bump”, known as bottleneck
(see, e.g., the review in Donzis and Sreenivasan, 2010).

Such a bump is known to be more noticeable in the normalized spectrum
of E(k) than E11(k1) (see, e.g., Kaneda and Ishihara, 2007). The bottleneck
does not contradict (1.6), (1.7), or (1.8) under the conditions of K41. A
simple closure, Obukhov’s constant skewness model (Obukhov, 1949), cap-
tures the bottleneck (see p. 404 in Monin and Yaglom, 1975, or Fig. 6.19 in
Davidson, 2004).

By using data from DNS with the number of grid points up to 40963

and Rλ ≈ 1,000, Donzis and Sreenivasan (2010) addressed the difficulty
in estimating the constants Ko, and proposed a procedure for determining
the constant by taking into account the effects (a) and (b), which yields
Ko ≈ 1.58.

The experimental value CK ≈ 0.5 ± 0.05, (i.e. Ko ≈ 1.53 ± 0.15) is not
far from the one derived by Lagrangian closure theories, the Abridged La-
grangian History Direct Interaction Approximation, ALDHIA, (Kraichnan,
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1: Small-Scale Statistics and Structure of Turbulence 7

1965, 1966), Strain based-LHDIA (Kraichnan and Herring, 1978; Herring
and Kraichnan, 1979) and the Lagrangian Renormalized Approximation,
LRA, (Kaneda, 1981; Gotoh et al., 1988), which are fully consistent with
K41, and can be obtained by the lowest-order truncations of systematic
renormalized perturbative expansions without introducing any ad hoc ad-
justing parameter. They give Ko ≈ 1.77, 2.0 and 1.72, respectively. The
spectrum for Rλ → ∞ by the LRA is also plotted in Fig. 1.1.

1.3 Examination of the ideas underlying the 4/5 law

1.3.1 Energy dissipation rate at ν → 0

Although plausible in itself, Kolmogorov’s 4/5 law is derived on the basis
of several assumptions. Among them is one concerned with the average 〈ε〉
in the limit ν → 0, or equivalently in the limit of the Reynolds number
Re ≡ u′L/ν → ∞. It is assumed that 〈ε〉 is not so small that the first term
is dominant on the right hand side of (1.3) for L � r � η, in the limit
ν → 0. This assumption is concerned with a fundamental question on the
smoothness of the turbulent field:

(a) does 〈ε〉 remain non-zero finite;
(b) or does 〈ε〉 → 0 in the limit?

If (a) is true, we may safely assume that the first term is dominant on
the right-hand side of (1.3) under the conditions (i), (ii) and (iii) used in
deriving (1.5). Since 〈ε〉 = 2ν

〈
eijeij

〉
, (a) implies that

〈
eijeij

〉 → ∞, i.e.,
the mean square of at least one component of the velocity gradient tensor
diverges as ν → 0, where eij ≡ (∂ui/∂xj + ∂uj/∂xi)/2, and we use the
summation convention for repeated indices. The condition (a) also implies
that the dissipation in the limit ν → 0 is different from that in the ideal fluid
with ν = 0, in which 〈ε〉 must be zero, and in this sense the limit is singular.
Such a singularity is well known for flow past a solid body: neglecting it
gives rise to D’Alembert’s paradox.

Let Dε be the normalized dissipation rate defined by Dε ≡ L 〈ε〉 /u′3.
Rigorous upper bounds for Dε have been derived; for example, it has been
shown that, in body-forced turbulence,

Dε ≤ a

Re
+ b, (1.10)

where the prefactors a and b depend only on the functional shape of the body
force and not on its magnitude or any other length scales in the force, the
domain or the flow, and 〈ε〉 and L are to be understood as the time-average
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8 Kaneda & Morishita

of ε and the longest length scale in the applied forcing function, respectively
(Doering and Foias, 2002; Doering, 2009). As regards the lower band, an
application of Poincaré’s inequality gives Dε ≥ 4π2/(α2Re), as noted by
Doering and Foias (2002), where α = L′/L is the ratio of the domain size L′

to L. However, these inequalities are not sufficient to answer the question of
whether (a) is true or not.

Studies have been made to address this question through DNS. The DNS
data with Rλ up to approximately 200 compiled by Sreenivasan (1998),
which include both decaying and forced turbulence data, shows that Dε

decreases with Rλ for Rλ < 200 or so, while adding the DNS-ES data up to
Rλ ≈ 1200 strongly suggests that Dε remains finite and independent of Re

in the limit of Re → ∞ (Kaneda et al., 2003).
The right-hand side of (1.10) decreases rapidly with Re at small Re, then

decreases slowly at larger Re, and approaches a constant as Re → ∞. The
latter is consistent with the expectation that Dε → constant as Re → ∞,
and the former, or the first term in (1.10), is the result valid for asymptoti-
cally small Re, (Sreenivasan, 1984; Doering and Foias, 2002). By using the
rigorous relation Re = DεR

2
λ/15 (see (1.12) below), (1.10) can be cast into

the form

Dε ≤ b

2

(
1 +

√
1 +

4a

b2
1

R′2
λ

)
, (1.11)

where R′
λ ≡ Rλ/

√
15. Donzis et al. (2005) showed that the relation (1.11),

with the inequality replaced by equality, provides a good fit for the Reynolds
number dependence of Dε in DNS. Another expression of the Reynolds num-
ber dependence of Dε was proposed by Lohse (1994) on the basis of physical
assumptions. Readers may refer to Tsinober (2009) and references cited
therein for more DNS and experimental studies on Dε.

Simple algebra gives

L

η
= D1/2

ε Re3/4 = 15−3/4D5/4
ε R

3/2
λ ∝ Re3/4, (1.12)

where the last proportionality is satisfied if Dε is independent of Re.

1.3.2 Influence of finite Re, L/r and r/η

The 4/5 law assumes that Re, L/r and r/η are sufficiently large. The same is
true in K41, which assumes Re, L/r → ∞. Even if these theories are correct,
they themselves do not provide any quantitative answer to the question of
how large Re, L/r and r/η must be for the theories to achieve any required
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1: Small-Scale Statistics and Structure of Turbulence 9

accuracy. In this respect (1.3) is interesting, because it is an exact rela-
tion (subject to the homogeneity and isotropy conditions), and may give a
quantitative answer to such a question.

As regards the forcing term in (1.3), it can be shown by simple algebra
that F (r)/(〈ε〉 r) ≈ Cf(r/L)2, provided that the forcing is exerted only at
low wavenumber modes, as in DNS-ES, where Cf is a dimensionless constant
of order unity which may depend on the method of forcing (see, for example
(Gotoh et al., 2002) and (Kaneda et al., 2008)).

The viscosity term is not easy to evaluate rigorously, but a simple model
based on (1.8) may be applicable as a first approximation (Lindborg, 1999;
Moisy et al., 1999; Qian, 1999; Lundgren, 2003; Davidson, 2004; Kaneda
et al., 2008, the last of which is referred to below as KYI). Substituting
(1.9) into the viscosity term of (1.3) and assuming statistical stationarity
gives

Δ(r) ≡ BL
3 (r)
〈ε〉 r

+
4
5

= Cv

(
r

η

)−4/3

+ Cf

( r

L

)2
, (1.13)

where Cv = (44/9)CR. Although this model is not rigorous, especially out-
side the inertial subrange, it was confirmed to be in good agreement with
DNS-ES at large Rλ (> 400 or so) and L � r � η (KYI; Ishihara et al.,
2009).

Equation (1.13) implies that the difference Δ(r) takes its minimum Δmin

as function of r at r = rm , where

Δmin ∝ R
−6/5
λ ,

rm

η
∝
(

L
η

)3/5

∝ R
9/10
λ , (1.14)

and the last proportionality is satisfied when (1.12) holds (see, for example,
(Moisy et al., 1999; Qian, 1999) and KYI).

For decaying turbulence in the absence of external forcing f , one may
insert F = 0 in (1.3). But in this case its last term is not zero because
turbulence cannot be stationary without external forcing. Lindborg (1999)
showed that a simple model based on (1.9) and K–ε type modeling à la
Kolmogorov (1941b) gives

Δ(r) = Cv

(
r

η

)−4/3

+ CnR−1
λ

(
r

η

)2/3

, (1.15)

(Cn is a constant), so that Δ(r) takes its minimum Δmin at r = rm, where

Δmin ∝ R
−2/3
λ ,

rm

η
∝ R

1/2
λ . (1.16)
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10 Kaneda & Morishita

The approximation (1.15) can be derived also by a method of matched
asymptotic expansion (Lundgren, 2003).

The decay of Δmin in proportion to R
−6/5
λ in (1.14) for forced turbu-

lence, and in proportion to R
−2/3
λ in (1.16) for decaying turbulence, is in

agreement with the data compiled by Antonia and Burattini (2006). The
estimates (1.15) and (1.16) are consistent with those by Qian (1999). De-
cay in proportion to R

−6/5
λ in forced turbulence was also confirmed to be

in agreement with the DNS-ES data (KYI). For experimental or DNS data
of BL

3 (r), or for the comparison of (1.13) or (1.15) with experimental or
DNS data, readers may refer to, for example, (Watanabe and Gotoh, 2004;
Antonia and Burattini, 2006) and references cited therein, in addition to
KYI.

Sreenivasan and Bershadskii (2006) proposed an approximation for Δ(r)
based on an expansion of Δ(r) in powers of log(r/rm), and argued that
experimental and DNS data fit well to rm/η ∝ Rμ

λ with μ = 0.73 ± 0.05.
The difference between this and the exponents in (1.14) and (1.16) is not
surprising in view of the fact that the data set used for fitting includes data
both from decaying turbulent flows and from forced turbulent flows.

1.3.3 Spectral space

The NS equation for homeogeneous and isotropic (HI) turbulence gives the
spectral equation,

∂

∂t
E(k) = TE(k) − 2νk2E(k) + F̂ (k), (1.17)

where E(k) is the energy spectrum, TE(k) is the energy transfer function
due to the nonlinear interaction, and F̂ (k) represents the energy input due
to the forcing f .

Integrating (1.17) with respect to k from K to ∞ and replacing K with
k gives

Π(k) = 〈ε〉 − 2ν

∫ k

0
p2E(p)dp −

∫ ∞

k
F̂ (p)dp +

∫ ∞

k

∂

∂t
E(p)dp, (1.18)

where Π(k) is the energy flux across the wavenumber k, and is defined by

Π(k) ≡
∫ k

0
TE(p)dp,

where we have used∫ ∞

0
TE(k)dk = 0, 〈ε〉 = 2ν

∫ ∞

0
k2E(k)dk.
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