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Essentials of Information Theory

Throughout the book, the symbol P denotes various probability distributions. In
particular, in Chapter 1, P refers to the probabilities for sequences of random
variables characterising sources of information. As a rule, these are sequences of
independent and identically distributed random variables or discrete-time Markov
chains; namely, P(U1 = u1, . . . ,Un = un) is the joint probability that random
variables U1, . . . ,Un take values u1, . . . ,un, and P(V = v |U = u,W = w) is the
conditional probability that a random variable V takes value v, given that ran-
dom variables U and W take values u and w, respectively. Likewise, E denotes the
expectation with respect to P.

The symbols p and P are used to denote various probabilities (and probability-
related objects) loosely. The symbol �A denotes the cardinality of a finite set A.
The symbol 1 stands for an indicator function. We adopt the following notation and
formal rules for logarithms: ln = loge, log = log2, and for all b > 1: 0 · logb 0 = 0 ·
logb∞ = 0. Next, given x > 0, �x� and �x� denote the maximal integer that is no
larger than x and the minimal integer that is no less than x, respectively. Thus,
�x� ≤ x ≤ �x�; equalities hold here when x is a positive integer (�x� is called the
integer part of x.)

The abbreviations LHS and RHS stand, respectively, for the left-hand side and
the right-hand side of an equation.

1.1 Basic concepts. The Kraft inequality. Huffman’s encoding

A typical scheme used in information transmission is as follows:

A message source → an encoder → a channel

→ a decoder → a destination
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2 Essentials of Information Theory

Example 1.1.1 (a) A message source: a Cambridge college choir.
(b) An encoder: a BBC recording unit. It translates the sound to a binary array and
writes it to a CD track. The CD is then produced and put on the market.
(c) A channel: a customer buying a CD in England and mailing it to Australia. The
channel is subject to ‘noise’: possible damage (mechanical, electrical, chemical,
etc.) incurred during transmission (transportation).
(d) A decoder: a CD player in Australia.
(e) A destination: an audience in Australia.
(f) The goal: to ensure a high-quality sound despite damage.

In fact, a CD can sustain damage done by a needle while making a neat hole in
it, or by a tiny drop of acid (you are not encouraged to make such an experiment!).
In technical terms, typical goals of information transmission are:

(i) fast encoding of information,
(ii) easy transmission of encoded messages,

(iii) effective use of the channel available (i.e. maximum transfer of information
per unit time),

(iv) fast decoding,
(v) correcting errors (as many as possible) introduced by noise in the channel.

As usual, these goals contradict each other, and one has to find an optimal solu-
tion. This is what the chapter is about. However, do not expect perfect solutions:
the theory that follows aims mainly at providing knowledge of the basic principles.
A final decision is always up to the individual (or group) responsible.

A large part of this section (and the whole of Chapter 1) will deal with encoding
problems. The aims of encoding are:

(1) compressing data to reduce redundant information contained in a message,
(2) protecting the text from unauthorised users,
(3) enabling errors to be corrected.

We start by studying sources and encoders. A source emits a sequence of letters
(or symbols),

u1 u2 . . . un . . . , (1.1.1)

where u j ∈ I, and I(= Im) is an m-element set often identified as {1, . . . ,m}
(a source alphabet). In the case of literary English, m = 26 + 7, 26 letters plus
7 punctuation symbols: . , : ; – ( ). (Sometimes one adds ? ! ‘ ’ and ”). Telegraph
English corresponds to m = 27.

A common approach is to consider (1.1.1) as a sample from a random source,
i.e. a sequence of random variables

U1,U2, . . . ,Un, . . . (1.1.2)

and try to develop a theory for a reasonable class of such sequences.
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1.1 Basic concepts. The Kraft inequality. Huffman’s encoding 3

Example 1.1.2 (a) The simplest example of a random source is a sequence of
independent and identically distributed random variables (IID random variables):

P(U1 = u1, U2 = u2, . . . ,Uk = uk) =
k

∏
j=1

p(u j), (1.1.3a)

where p(u) = P(Uj = u), u ∈ I, is the marginal distribution of a single variable. A
random source with IID symbols is often called a Bernoulli source.

A particular case where p(u) does not depend on u ∈U (and hence equals 1/m)
corresponds to the equiprobable Bernoulli source.
(b) A more general example is a Markov source where the symbols form a discrete-
time Markov chain (DTMC):

P(U1 = u1, U2 = u2, . . . , Uk = uk) = λ (u1)
k−1

∏
j=1

P(u j,u j+1), (1.1.3b)

where λ (u) =P(U1 = u), u∈ I, are the initial probabilities and P(u,u′) =P(Uj+1 =

u′|Uj = u), u,u′ ∈ I, are transition probabilities. A Markov source is called sta-
tionary if P(Uj = u) = λ (u), j ≥ 1, i.e. λ = {λ (u),u = 1, . . . ,m} is an invariant
row-vector for matrix P = {P(u,v)}: ∑

u∈I
λ (u)P(u,v) = λ (v), v ∈ I, or, shortly,

λP = λ .
(c) A ‘degenerated’ example of a Markov source is where a source emits repeated
symbols. Here,

P(U1 =U2 = · · ·=Uk = u) = p(u), u ∈ I,
P(Uk �=Uk′) = 0, 1≤ k < k′,

(1.1.3c)

where 0≤ p(u)≤ 1 and ∑
u∈I

p(u) = 1.

An initial piece of sequence (1.1.1)

u(n) = (u1,u2, . . . ,un) or, more briefly, u(n) = u1u2 . . .un

is called a (source) sample n-string, or n-word (in short, a string or a word), with
digits from I, and is treated as a ‘message’. Correspondingly, one considers a ran-
dom n-string (a random message)

U(n) = (U1,U2, . . . ,Un) or, briefly, U(n) =U1U2 . . .Un.

An encoder (or coder) uses an alphabet J(= Jq) which we typically write as
{0,1, . . . ,q−1}; usually the number of encoding symbols q < m (or even q� m);
in many cases q = 2 with J = {0,1} (a binary coder). A code (also coding, or
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4 Essentials of Information Theory

encoding) is a map, f , that takes a symbol u ∈ I into a finite string, f (u) = x1 . . .xs,
with digits from J. In other words, f maps I into the set J∗ of all possible strings:

f : I → J∗ =
⋃
s≥1

(
J×·· · (s times) × J

)
.

Strings f (u) that are images, under f , of symbols u ∈ I are called codewords
(in code f ). A code has (constant) length N if the value s (the length of a code-
word) equals N for all codewords. A message u(n) = u1u2 . . .un is represented as a
concatenation of codewords

f (u(n)) = f (u1) f (u2) . . . f (un);

it is again a string from J∗.

Definition 1.1.3 We say that a code is lossless if u �= u′ implies that f (u) �= f (u′).
(That is, the map f : I → J∗ is one-to-one.) A code is called decipherable if any
string from J∗ is the image of at most one message. A string x is a prefix in another
string y if y = xz, i.e. y may be represented as a result of a concatenation of x and z.
A code is prefix-free if no codeword is a prefix in any other codeword (e.g. a code
of constant length is prefix-free).

A prefix-free code is decipherable, but not vice versa:

Example 1.1.4 A code with three source letters 1,2,3 and the binary encoder
alphabet J = {0,1} given by

f (1) = 0, f (2) = 01, f (3) = 011

is decipherable, but not prefix-free.

Theorem 1.1.5 (The Kraft inequality) Given positive integers s1, . . . ,sm, there
exists a decipherable code f : I → J∗, with codewords of lengths s1, . . . ,sm, iff

m

∑
i=1

q−si ≤ 1. (1.1.4)

Furthermore, under condition (1.1.4) there exists a prefix-free code with codewords
of lengths s1, . . . ,sm.

Proof (I) Sufficiency. Let (1.1.4) hold. Our goal is to construct a prefix-free code
with codewords of lengths s1, . . . ,sm. Rewrite (1.1.4) as

s

∑
l=1

nlq
−l ≤ 1, (1.1.5)
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1.1 Basic concepts. The Kraft inequality. Huffman’s encoding 5

or

nsq
−s ≤ 1−

s−1

∑
l=1

nlq
−l,

where nl is the number of codewords of length l and s = maxsi. Equivalently,

ns ≤ qs−n1qs−1−·· ·−ns−1q. (1.1.6a)

Since ns ≥ 0, deduce that

ns−1q≤ qs−n1qs−1−·· ·−ns−2q2,

or

ns−1 ≤ qs−1−n1qs−2−·· ·−ns−2q. (1.1.6b)

Repeating this argument yields subsequently

ns−2 ≤ qs−2−n1qs−3 − . . . −ns−3q
...

...
...

n2 ≤ q2−n1q

(1.1.6.s−1)

n1 ≤ q. (1.1.6.s)

Observe that actually either ni+1 = 0 or ni is less than the RHS of the inequality,
for all i = 1, . . . ,s− 1 (by definition, ns ≥ 1 so that for i = s− 1 the second possi-
bility occurs). We can perform the following construction. First choose n1 words
of length 1, using distinct symbols from J: this is possible in view of (1.1.6.s).
It leaves (q− n1) symbols unused; we can form (q− n1)q words of length 2 by
appending a symbol to each. Choose n2 codewords from these: we can do so in
view of (1.1.6.s−1). We still have q2−n1q−n2 words unused: form n3 codewords,
etc. In the course of the construction, no new word contains a previous codeword
as a prefix. Hence, the code constructed is prefix-free.

(II) Necessity. Suppose there exists a decipherable code in J∗ with codeword
lengths s1, . . . ,sm. Set s = maxsi and observe that for any positive integer r

(
q−s1 + · · ·+q−sm

)r
=

rs

∑
l=1

blq
−l

where bl is the number of ways r codewords can be put together to form a string of
length l.
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6 Essentials of Information Theory

Because of decipherability, these strings must be distinct. Hence, we must have
bl ≤ ql , as ql is the total number of l-strings. Then(

q−s1 + · · ·+q−sm
)r ≤ rs,

and

q−s1 + · · ·+q−sm ≤ r1/rs1/r = exp

[
1
r
(logr+ logs)

]
.

This is true for any r, so take r→ ∞. The RHS goes to 1.

Remark 1.1.6 A given code obeying (1.1.4) is not necessarily decipherable.

Leon G. Kraft introduced inequality (1.1.4) in his MIT PhD thesis in 1949.

One of the principal aims of the theory is to find the ‘best’ (that is, the shortest)
decipherable (or prefix-free) code. We now adopt a probabilistic point of view and
assume that symbol u ∈ I is emitted by a source with probability p(u):

P(Uk = u) = p(u).

[At this point, there is no need to specify a joint probability of more than one
subsequently emitted symbol.]

Recall, given a code f : I �→ J∗, we encode a letter i ∈ I by a prescribed code-
word f (i) = x1 . . .xs(i) of length s(i). For a random symbol, the generated codeword
becomes a random string from J∗. When f is lossless, the probability of generating
a given string as a codeword for a symbol is precisely p(i) if the string coincides
with f (i) and 0 if there is no letter i ∈ I with this property. If f is not one-to-one,
the probability of a string equals the sum of terms p(i) for which the codeword f (i)
equals this string. Then the length of a codeword becomes a random variable, S,
with the probability distribution

P(S = s) = ∑
1≤i≤m

1(s(i) = s)p(i). (1.1.7)

We are looking for a decipherable code that minimises the expected word-length:

ES = ∑
s≥1

sP(S = s) =
m

∑
i=1

s(i)p(i).

The following problem therefore arises:

minimise g(s(1), . . . ,s(m)) = ES

subject to∑
i

q−s(i) ≤ 1 (Kraft)

with s(i) positive integers.

(1.1.8)
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1.1 Basic concepts. The Kraft inequality. Huffman’s encoding 7

Theorem 1.1.7 The optimal value for problem (1.1.8) is lower-bounded as fol-
lows:

min ES≥ hq(p(1), . . . , p(m)), (1.1.9)

where

hq(p(1), . . . , p(m)) =−∑
i

p(i) logq p(i). (1.1.10)

Proof The algorithm (1.1.8) is an integer-valued optimisation problem. If we drop
the condition that s(1), . . . ,s(m) ∈ {1,2, . . .}, replacing it with a ‘relaxed’ con-
straint s(i) > 0, 1 ≤ i ≤ m, the Lagrange sufficiency theorem could be used. The
Lagrangian reads

L (s(1), . . . ,s(m),z;λ ) =∑
i

s(i)p(i)+λ (1−∑
i

q−s(i)− z)

(here, z≥ 0 is a slack variable). Minimising L in s1, . . . ,sm and z yields

λ < 0, z = 0, and
∂L

∂ s(i)
= p(i)+q−s(i)λ lnq = 0,

whence

− p(i)
λ lnq

= q−s(i), i.e. s(i) =− logq p(i)+ logq(−λ lnq), 1≤ i≤ m.

Adjusting the constraint ∑
i

q−s(i) = 1 (the slack variable z = 0) gives

∑
i

p(i)/(−λ lnq) = 1, i.e. −λ lnq = 1.

Hence,

s(i) =− logq p(i), 1≤ i≤ m,

is the (unique) optimiser for the relaxed problem, giving the value hq from (1.1.10).
The relaxed problem is solved on a larger set of variables s(i); hence, its minimal
value does not exceed that in the original one.

Remark 1.1.8 The quantity hq defined in (1.1.10) plays a central role in the
whole of information theory. It is called the q-ary entropy of the probability distri-
bution (p(x), x ∈ I) and will emerge in a great number of situations. Here we note
that the dependence on q is captured in the formula

hq(p(1), . . . , p(m)) =
1

logq
h2(p(1), . . . , p(m))

where h2 stands for the binary entropy:

h2(p(1), . . . , p(m)) =−∑
i

p(i) log p(i). (1.1.11)
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8 Essentials of Information Theory

Worked Example 1.1.9 (a) Give an example of a lossless code with alphabet
Jq which does not satisfy the Kraft inequality. Give an example of a lossless code
with the expected code-length strictly less than hq(X).

(b) Show that the ‘Kraft sum’ ∑
i

q−s(i) associated with a lossless code may be

arbitrarily large (for sufficiently large source alphabet).

Solution (a) Consider the alphabet I = {0,1,2} and a lossless code f with f (0) =
0, f (1) = 1, f (2) = 00 and codeword-lengths s(0) = s(1) = 1,s(2) = 2. Obviously,
∑

x∈I
2−s(x) = 5/4, violating the Kraft inequality. For a random variable X with p(0)=

p(1) = p(2) = 1/3 the expected codeword-length Es(X) = 4/3 < h(X) = log3 =

1.585.

(b) Assume that the alphabet size m = � I = 2(2L − 1) for some positive
integer L. Consider the lossless code assigning to the letters x ∈ I the codewords
0,1,00,01,10,11,000, . . ., with the maximum codeword-length L. The Kraft sum is

∑
x∈I

2−s(x) = ∑
l≤L

∑
x:s(x)=l

2−s(x) = ∑
l≤L

2l×2−l = L,

which can be made arbitrarily large.

The assertion of Theorem 1.1.7 is further elaborated in

Theorem 1.1.10 (Shannon’s noiseless coding theorem (NLCT)) For a ran-
dom source emitting symbols with probabilities p(i) > 0, the minimal expected
codeword-length for a decipherable encoding in alphabet Jq obeys

hq ≤min ES < hq +1, (1.1.12)

where hq =−∑
i

p(i) logq p(i) is the q-ary entropy of the source; see (1.1.10).

Proof The LHS inequality is established in (1.1.9). For the RHS inequality, let
s(i) be a positive integer such that

q−s(i) ≤ p(i)< q−s(i)+1.

The non-strict bound here implies ∑
i

q−s(i) ≤ ∑
i

p(i) = 1, i.e. the Kraft inequality.

Hence, there exists a decipherable code with codeword-lengths s(1), . . . ,s(m). The
strict bound implies

s(i)<− log p(i)
logq

+1,
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1.1 Basic concepts. The Kraft inequality. Huffman’s encoding 9

and thus

ES <−
∑
i

p(i) log p(i)

logq
+∑

i

p(i) =
h

logq
+1.

Example 1.1.11 An instructive application of Shannon’s NLCT is as follows. Let
the size m of the source alphabet equal 2k and assume that the letters i= 1, . . . ,m are
emitted equiprobably: p(i) = 2−k. Suppose we use the code alphabet J2 = {0,1}
(binary encoding). With the binary entropy h2 =− log2−k ∑

1≤i≤2k
2−k = k, we need,

on average, at least k binary digits for decipherable encoding. Using a term bit for
a unit of entropy, we say that on average the encoding requires at least k bits.

Moreover, the NLCT leads to a Shannon–Fano encoding procedure: we fix pos-
itive integer codeword-lengths s(1), . . . ,s(m) such that q−s(i) ≤ p(i)< q−s(i)+1, or,
equivalently,

− logq p(i)≤ s(i)<− logq p(i)+1; that is, s(i) =
⌈
− logq p(i)

⌉
. (1.1.13)

Then construct a prefix-free code, from the shortest s(i) upwards, ensuring that
the previous codewords are not prefixes. The Kraft inequality guarantees enough
room. The obtained code may not be optimal but has the mean codeword-length
satisfying the same inequalities (1.1.13) as an optimal code.

Optimality is achieved by Huffman’s encoding f H
m : Im �→ J∗q . We first discuss

it for binary encodings, when q = 2 (i.e. J = {0,1}). The algorithm constructs a
binary tree, as follows.

(i) First, order the letters i ∈ I so that p(1)≥ p(2)≥ ·· · ≥ p(m).

(ii) Assign symbol 0 to letter m−1 and 1 to letter m.

(iii) Construct a reduced alphabet Im−1 = {1, . . . ,m− 2,(m− 1,m)}, with proba-
bilities

p(1), . . . , p(m−2), p(m−1)+ p(m).

Repeat steps (i) and (ii) with the reduced alphabet, etc. We obtain a binary tree. For
an example of Huffman’s encoding for m = 7 see Figure 1.1.

The number of branches we must pass through in order to reach a root i of the
tree equals s(i). The tree structure, together with the identification of the roots
as source letters, guarantees that encoding is prefix-free. The optimality of binary
Huffman encoding follows from the following two simple lemmas.
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10 Essentials of Information Theory

m = 7

i

1
2
3
4
5
6

7

p i

.025

.025
.05
.1
.15
.15
.5

11111

11110
1110
110
101
100
0

f(i) s i

1
3
3
3

4
5

5
.5 .15 .15 .1 .05 .025 .025

1.0

Figure 1.1

Lemma 1.1.12 Any optimal prefix-free binary code has the codeword-lengths
reverse-ordered versus probabilities:

p(i)≥ p(i′) implies s(i)≤ s(i′). (1.1.14)

Proof If not, we can form a new code, by swapping the codewords for i and i′.
This shortens the expected codeword-length and preserves the prefix-free property.

Lemma 1.1.13 In any optimal prefix-free binary code there exist, among the
codewords of maximum length, precisely two agreeing in all but the last digit.

Proof If not, then either (i) there exists a single codeword of maximum length,
or (ii) there exist two or more codewords of maximum length, and they all differ
before the last digit. In both cases we can drop the last digit from some word of
maximum length, without affecting the prefix-free property.

Theorem 1.1.14 Huffman’s encoding is optimal among the prefix-free binary
codes.

Proof The proof proceeds with induction in m. For m = 2, the Huffman code f H
2

has f H
2 (1) = 0, f H

2 (2) = 1, or vice versa, and is optimal. Assume the Huffman code
f H
m−1 is optimal for Im−1, whatever the probability distribution. Suppose further that
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