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The purpose of this book

For many years after its appearance, general relativity (GR) was regarded as

an exotic extension of Newtonian gravity, that was only necessary for high-

precision measurements in the Solar System and for describing the expansion

of the Universe. However, the increasing precision of physical and astronomical

measurement is transforming GR into an indispensable tool, and not merely a

small correction to Newton’s theory.

It is commonly stated that we have entered the era of precision cosmology, in

which a number of important observations have reached a degree of precision,

and a level of agreement with theory, that is comparable with many Earth-based

physics experiments. One of the consequences of this advance is the need to

examine at what point our usual, well-worn assumptions begin to compromise

the accuracy of our models, and whether more general theoretical methods are

needed to maintain calculational accuracy. Historically, each advance in astro-

nomical measurement has produced many new discoveries, and revealed more

of the structure of the cosmos, such as voids, walls, filaments, etc. As we map

out the Universe around us – its mass distribution and flow patterns – in ever

greater detail, the nonlinear behaviour of cosmic structures will become increas-

ingly apparent, and the methods of inhomogeneous cosmology will come into

their own. Inhomogeneous solutions of Einstein’s field equations provide models

of both small and large structures that are fully nonlinear.

It is widely assumed that the Universe, when viewed on a large enough scale,

is homogeneous and can be described by an FLRW model. The successes of the

Concordance model are built on using a spatially homogeneous and isotropic

background metric combined with first-order perturbation theory. Although this

assumption has been appropriate up to now, and underlies many important

developments in cosmology, it is not the whole story. The modern successes have

led to considerable hubris and overconfidence that we have pinned down the

matter content and evolution of the key epochs of the post-grand unification

Universe, even though all admit we don’t know the underlying physics of dark

matter and dark energy. Therefore, despite these successes, we must not lose sight

of the fact that the present-day Universe is actually very inhomogeneous. If we

keep this fact out of our minds, then we ignore knowledge and techniques that will

be essential in understanding the real Universe and its multitudinous components

in the era of precision cosmology. The relationship between a lumpy universe and

an averaged homogeneous one is still not all that well understood, though there
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2 1 The purpose of this book

are some promising investigations (Buchert, 2000, 2001; Buchert and Carfora,

2002, 2003; Räsänen, 2006; Buchert, 2008; Ellis, 2008; Leith, Ng, and Wiltshire,

2008). The assumption of homogeneity – so essential in developing the basics

of cosmology – must now be considered just a zeroth-order approximation; and

similarly linear perturbation theory a first-order approximation, whose domain

of validity is an early, nearly homogeneous Universe.

The use of perturbations relies on two myths that we wish to briefly discuss

here:

1. Since for galaxy clusters the gravitational potential φ obeys φ/c2
≪ 1

(typically φ/c2
≈ 10−5), the spacetime is nearly flat and linear perturbations

work to sufficient accuracy.

2. Where linear perturbations become unsatisfactory, one can go to higher

orders of perturbation.

This is how these myths disagree with reality:

1. The fact is that the quantity φ/c2 is a measure of the so-called curva-

ture contrast (perturbation of the 3-dimensional curvature of space divided by

the local value of the curvature). But in order to remain safely within the ‘lin-

ear regime’, both the curvature contrast and the density contrast, ∆ρ/ρ, must

remain small. Moreover, the curvature contrast is a very imprecise indicator

of the quality of approximation, since, for example in the Lemaître–Tolman

model with a negative curvature background, it is decreasing with time, irre-

spective of the initial conditions (see Sec. 18.10 in Plebański and Krasiński,

2006), while the density contrast is increasing. Thus, results of such approxi-

mate calculations cannot be safely extrapolated into the future. At present, for

various galaxy clusters ∆ρ/ρ is contained between about 5 and about 4000 (see

Table 4.1 here), and still much more for smaller structures, so we are already

outside the range where the series of approximations can be expected to con-

verge to an exact result. If an exact calculation gives a result that is close to

one obtained earlier by a perturbative method, then this is a confirmation that

should be welcomed rather than criticised by saying ‘it was obvious that the

result had to be close to the earlier-calculated one, so the exact treatment was

needless.’

2. Higher-order perturbations can improve the accuracy achieved in the first

order only when we are still within the range of convergence of the series of

approximations (or, in astronomical terminology, within the ‘linear regime’).

When we are outside that range, second-order corrections will turn out to be

larger than the first-order result, and thus worthless. Indeed, second-order cal-

culations are so complex, and involve so many terms, that investigations must

focus on particular phenomena and set all other unrelated terms to zero.

3. Although various assertions are made about the requirements for perturba-

tion theory to be valid, we are not aware of any proof of the domain of validity

at linear or any other order, nor any proof of convergence. There do seem to

be significant difficulties and uncertainties with the method, as discussed in the
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1 The purpose of this book 3

following examples. Van Elst et al. (1997) show that most irrotational silent

cosmological models have a linearisation instability. Bruna and Girbau (1999,

2005) analysed the linearisation stability of Robertson–Walker models, and

showed the closed model is not linearisation stable. Notari (2006) suggests that,

due to the self-gravitation of perturbations, their contribution at the present

day has grown much larger than expected from standard perturbation theory.

In a brief review of nonlinear methods for cosmological perturbations, Matarrese

(1996) concludes that there are effects that violate the standard wisdom about

when relativistic effects are important. Crocce and Scoccimarro (2006) investi-

gate terms up to third order in a perturbation expansion, and they show that

terms of successive orders can have different signs, and that second- and third-

order terms can exceed first-order terms at larger wavelengths (see their Fig. 1).

To address this problem, they introduce renormalised perturbation theory, and

though in the examples given the new approach keeps all its terms positive,

and higher-order terms contribute at ever smaller scales, the convergence of the

renormalised series is also unproven. Losic and Unruh (2008) and Unruh and

Losic (2008) find that second-order perturbations could become stronger than

first order in models of slow-roll inflation. In the ‘nonlinear regime’ there is just

no escape from exact methods.

On the other hand, the observational data do allow plenty of scope for expla-

nations based on inhomogeneous models. This fact is often hidden under layers of

vigorous advertising for traditional methods, but is slowly coming to light – see

the broad and impartial review by Sarkar (2008). Similar comments, although

strongly biased toward averaging techniques seen as the ultimate best method,

can be found in the papers by Wiltshire (2007).

In fact, recent works have tried to combine the averaging method ‘à la Buchert’

with cosmological linear perturbation theory, claimed to be valid at scales where

nonlinear evolution is supposed to enter into play, to study the ‘backreaction’ of

inhomogeneities on a ‘homogeneous background’ (Li and Schwarz, 2007, 2008).

This shows that the cosmological community is becoming aware that the effects

of inhomogeneities must be taken into account even if the methods to do so are

still in their infancy.

More reasons why approximate results are uncertain, misleading or not fully

useful will be given later in this book.

During the 80 years after the Friedmann–Lemaître–Robertson–Walker papers,

relativity has advanced much farther on many fronts and produced results that

can be directly used in interpreting cosmological observations. In the present

text we demonstrate several examples of such applications of exact methods of

relativity, mostly (but not exclusively) taken from our own papers. This line

of research has a tradition going back to the 1930s, and many powerful exact

results had been derived long ago – they are presented systematically in the

review by Krasiński (1997). Here we concentrate on the papers that relied on

modern astronomical data.
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4 1 The purpose of this book

In the first part of this book we present those elements of exact relativis-

tic cosmology that are directly applicable to the interpretation of observations.

We assume that the reader is familiar with relativity at the graduate level. We

describe the basic properties of three classes of models that have already proved

usable: (I) The Lemaître (1933)–Tolman (1934) (L–T) model, which is an exact

solution of Einstein’s equations with spherical symmetry and dust source – the

simplest generalisation of the Friedmann models. (II) The model for which we

propose the name ‘Lemaître model’ – for good historical reasons, see Lemaître

(1933) and Sec. 2.2, but which is known in the literature as the Misner–Sharp

(1964) approach. This is not an explicit solution, but a metric whose components

obey a set of two equations. This scheme, well suited to numerical treatment,

describes the evolution of a spherically symmetric perfect fluid with nonzero pres-

sure gradient. (III) The Szekeres (1975) model, which is an exact dust solution

with no symmetry, generalising L–T. This is currently the most sophisticated

known exact solution of Einstein’s equations of cosmological relevance. In Part

I of the book we also introduce the relativistic description of light propagation,

which includes a detailed presentation of apparent and event horizons in the

L–T model. This is a necessary introduction to the discussion of formation and

evolution of nonstationary black holes.

In Part II we then present and discuss the applications of exact relativistic

methods to actual problems of observational cosmology. These include:

1. Formation of a galaxy with a central black hole. This is a problem

for whose solution exact methods of relativity are essential, since it is impos-

sible even to define a black hole in a meaningful way by Newtonian methods

or perturbations of an FLRW background. Since this was the first investiga-

tion of this kind, we used the simplest model that was applicable to it – the

L–T model. Its spherical symmetry is a drawback, since most galaxies are not

spherically symmetric, and they rotate in addition. However, our investigation

may be useful for preliminary qualitative understanding of the process. We

considered two possible mechanisms of formation of such an entity: a gravita-

tional collapse of an ordinary ball of dust, and a condensation forming around

a pre-existing wormhole.

We aimed to reproduce the density distribution and mass of one actually

observed galaxy with a central black hole, M87. For this, we used the density

profile in that galaxy, believed to be known from observations, and for the

density profile within the growing black hole, about which nothing is and

nothing can be known from observations, we chose a simple model, joined

onto the galaxy profile.

To set realistic initial conditions we assumed that by the time of decoupling

of matter and radiation the condensation that would later grow to become

the galaxy had a density contrast consistent with the implications of mea-

surements of temperature anisotropies of the CMB radiation. There is a
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1 The purpose of this book 5

problem with this that keeps coming up in several other investigations: the

currently best achieved angular resolution of measurements of temperature is

0.1◦, while a typical proto-galaxy would occupy a region of angular diameter

of only 0.004◦ on the CMB sky (see Table 4.1). Thus, at present there are just

no adequate observational data to constrain our model. Lacking any better

choice, we took the limits known for the scale of 0.1◦ to apply to a single

galaxy.

It turned out that the galaxy–black hole structure can be generated by both

mechanisms, but for the condensation around a wormhole the black hole

appears in a much shorter time, almost instantly after the Big Bang. In that

section we stressed that the horizon whose position can be approximately

determined from observations is the apparent horizon, not the event horizon.

2. Formation and evolution of galaxy clusters and voids, using the L–T

model. Inhomogeneities are naturally generated in an inhomogeneous model

by the form of the arbitrary functions defining the model. We did not therefore

discuss their origin.

Rather, we inferred the amplitude of perturbations at the time of decoupling

from the constraints imposed by the measured temperature fluctuations of the

CMB radiation. Then we showed that perturbations at decoupling that are

consistent with observational constraints can generate a galaxy cluster whose

calculated parameters corresponding to the present epoch (1.5 × 1010 y after

the Big Bang) agree with the observed parameters of a galaxy cluster chosen

at random from the Abell catalogue. Here we encountered again the problem

mentioned above: the observational upper limit on the temperature anisotropy

of the CMB radiation is determined at angular scales about 20 times larger

than the angular diameter that an Abell proto-cluster would occupy on the

CMB sky. With better resolutions sure to be achieved in the future, our con-

straints will have to be re-evaluated. For voids, by the same method, we

achieved a qualitative agreement with observations, but for the density within

a void we obtained values several times larger than those observed.

The presence of non-baryonic dark matter (which does not interact with pho-

tons) would solve this discrepancy, since at the last scattering instant the

amplitude of dark matter fluctuations could be larger than temperature fluc-

tuations. However, this discrepancy can also be removed by more conventional

methods, which do not require large fluctuations at last scattering. It may per-

haps be removed by a more careful choice of the amplitudes and profiles of

density and velocity in the proto-voids, but meanwhile one of us (K.B.) put

forward another solution of the problem (see below).

These investigations also demonstrated that velocity perturbations are

distinctly more efficient in generating structures than are density pertur-

bations. This calls for a revision of the long-standing structure formation

paradigm that relies on the belief that density perturbations alone are
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6 1 The purpose of this book

responsible for the origin of structures. Matter at the edge of today’s typ-

ical void should occupy a region of angular diameter 0.1◦ on the CMB sky,

which is comparable to the current best resolution achieved in observations.

Thus, for voids we are on the verge of being able to test our models against

observations.

3. A more precise description of the formation of voids. In order to

solve the problem of insufficiently low densities within voids obtained in the

approach discussed above, we used the Lemaître model describing a mixture

of inhomogeneous dust and inhomogeneous radiation. Since the Einstein equa-

tions with no further assumptions are indeterminate in this case (the number

of unknown functions is larger by one than the number of equations), some-

thing had to be assumed about the radiation distribution. Lacking any data,

we took the simplest assumption – that the comoving spatial extent of the

perturbations of radiation density does not change with time (however the

amplitude of radiation density does change with time in the same way as in

the Friedmann models). Proceeding from this, we were able to reproduce the

current density distribution in voids with arbitrary precision. The assump-

tion about the profile of radiation density will most probably have to be

modified in the future, but our result shows that this is a workable approach

to the problem of void formation. This investigation highlights the fact that

the decoupling of matter and radiation is not a single instant, as is usually

assumed for simplicity, but a process extended in time.

4. The evolution of double structures (cluster–void pairs). We showed

that the evolution of pairs where a void sits on the edge of a cluster, or vice

versa, can be described using the quasi-spherical Szekeres (1975) model. Actu-

ally, the Szekeres model can be used to describe multiple structures as well,

but because of its mathematical limitations the parameters of the additional

objects are no longer free; in particular the peripheral structures come out too

large. This model helps us to understand some actually observed facts, such

as a faster evolution of large voids at larger distances from condensations

compared to voids in the proximity of condensations. An additional bonus

of this investigation is a physical interpretation of the arbitrary functions in

the Szekeres model (they define the direction of the dipole component of the

density distribution).

5. Interpretation of the type Ia supernova dimming as an effect of

inhomogeneities. We showed that, in principle, the observed excessive dim-

ming of type Ia supernovae with distance can be accounted for, on the basis

of proper general relativity, without introducing ‘dark energy’, if one per-

mits inhomogeneity in the matter distribution. This description is more nat-

ural than the standard assumption, which postulates a new and completely

unknown form of energy. This might also be a way of dealing with the ‘coinci-

dence problem’ attached to the time when the cosmological constant becomes
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1 The purpose of this book 7

dominant over the matter density. Even if the cosmological constant appears

as a very natural geometrical tool in Einstein’s equations, this implies that

we live in a preferred epoch, when the densities of ordinary matter and ‘dark

energy’ are comparable. (The cosmological term becomes negligible at very

high mass densities and extremely dominant at very low mass densities.)

We described how this problem can be dealt with in the more general set-

ting, then we gave some examples of exact inhomogeneous models with no

cosmological constant which can be found in the recent literature, and which

fit cosmological observations such as supernova observations, baryon acoustic

oscillations and H(z) measurements, and in addition recover the position of

the CMB power spectrum peaks. It was thus proved that evolving inhomo-

geneities can mimic, partly or totally, the effects of the ‘dark energy’ compo-

nent of the Concordance model.

Note, however, that the ‘dark energy’ problem can be approached in a still

different way. The cosmological models of the Robertson–Walker class are sup-

posed to apply at large scales, to an already-averaged geometry and matter

distribution in the Universe. So far, there exists no universally accepted def-

inition of averaging that would be both exact and covariant. However, there

are several definitions of approximate or non-covariant averaging procedures

(see, for example, the last chapter in Krasiński, 1997, and more recent refer-

ences in Célérier, 2007b) which agree in one point: averaging the nonlinear

Einstein equations produces an additional term that mimics negative pres-

sure (i.e. repulsion) in the large-scale energy–momentum tensor. We did not

discuss this approach here because of the lack of a general consensus concern-

ing the right method, but this line of research also seems more physical than

postulating a new form of energy.

6. Solving the ‘horizon problem’ without the use of inflationary

models. We showed that this supposed problem can be solved using the L–T

model with appropriately chosen arbitrary functions. This is preferable to the

use of inflation, which makes assumptions about physical conditions in the

Universe at such early times that any kind of direct verification is currently

impossible. Moreover, the solution we proposed solves the horizon problem

whatever the location of the observer in spacetime while inflation solves it

only temporarily. Alternatives to inflation deserve at least to be considered,

but, unfortunately, they tend to be suppressed in the noise of lobbying that

has surrounded the inflationary paradigm from the very beginning.

7. Influence of inhomogeneous structures in the path of a light ray on

the observed temperature distribution of the CMB radiation. We

first examined whether (part of) the dipole moment of the CMB might be

of a cosmological nature, by putting the observer off the centre of a partic-

ular class of L–T models. This result must be taken with caution, since the

moments beyond the quadrupole were not calculated here. However, it was
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8 1 The purpose of this book

the first time, to our knowledge, that the geodesic equations for non-radial

photons and formulae for the dipole and the quadrupole were established

for L–T models. We also gave an account of a study similar to ours, which

was completed later on and in which the octopole was also calculated. For

further investigation we used the quasi-spherical Szekeres model to describe

localised condensations or voids, matched into the homogeneous Friedmann

background. The light ray under investigation proceeded from a source that

emitted it during the decoupling epoch, through several inhomogeneous struc-

tures, to an observer registering it at the present epoch. It turned out that

the temperature anisotropies caused by the structures are smaller than those

generated by the Sachs–Wolfe (1967) effect, unless the observer is situated

within one of those structures.

The investigations reported here are preliminary, and most of them will have

to be refined or revised in the future, when more precise data become available,

and methods of self-consistent interpretation of observational data against inho-

mogeneous models are developed. The point we wish to make at present is that

this branch of cosmology is already advanced to some degree and its results and

potential contributions deserve to be more widely recognised.

www.cambridge.org/9780521769143
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-76914-3 — Structures in the Universe by Exact Methods
Krzysztof Bolejko , Andrzej Krasiński , Charles Hellaby , Marie-Noëlle Célérier
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

PART I

Theoretical background
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2

Exact solutions of Einstein’s equations that
are used in cosmology

2.1 The Lemaître–Tolman model

2.1.1 Basic properties

The Lemaître (1933)–Tolman (1934) (L–T) model is a spherically symmetric

nonstatic solution of the Einstein equations with a dust source, i.e. the matter

tensor is T αβ = ρuαuβ . The coordinates are assumed to be comoving, so that the

4-velocity of matter is uα = δα
t . See Krasiński (1997) and Plebański and Krasiński

(2006) for an extensive list of properties and other work on this model. Its metric

is (in units in which c = 1 and in the synchronous time gauge):

ds2 = dt2 −
R,r

2

1 + 2E(r)
dr2

− R2(t, r)(dϑ2 + sin2 ϑdϕ2), (2.1)

where E(r) is an arbitrary function, R,r = ∂R/∂r, and R(t, r) obeys

R,t
2 = 2E +

2M

R
+

Λ

3
R2 , (2.2)

where R,t = ∂R/∂t and Λ is the cosmological constant. Equation (2.2) is a first

integral of the Einstein equations, and M = M(r) is another arbitrary function

of integration. The mass density in energy units is:

κρ =
2M,r
R2R,r

, where κ =
8πG

c4
. (2.3)

The metric of the space t = const would be flat if E(r) were set to zero, so

E determines the curvature of space at each r value. Comparison of (2.2) with

the Newtonian energy equation for a spherically symmetric dust distribution

indicates that M(r) is the gravitational mass contained within the comoving

spherical shell at any given r, while E(r) is the energy per unit mass of the

particles in that shell.

Equation (2.2) can be solved by simple integration:

R∫

0

dR̃√
2E + 2M/R̃ + 1

3 ΛR̃2

= t − tB (r), (2.4)

where tB appears as an integration function (the bang time), and is an arbi-

trary function of r. This means that the Big Bang is not simultaneous as in the

Friedmann models, but occurs at different times at different distances from the

origin.
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