Neuromorphic and Brain-Based Robots

Neuromorphic and brain-based robotics have enormous potential for furthering our understanding of the brain. By embodying models of the brain on robotic platforms, researchers can investigate the roots of biological intelligence and work towards the development of truly intelligent machines.

This book provides a broad introduction to this ground-breaking area for researchers from a wide range of fields, from engineering to neuroscience. Case studies explore how robots are being used in current research, including a whisker system that allows a robot to sense its environment and neurally inspired navigation systems that show impressive mapping results. Looking to the future, several chapters consider the development of cognitive, or even conscious, robots that display the adaptability and intelligence of biological organisms. Finally, the ethical implications of intelligent robots are explored, from morality and Asimov’s three laws to the question of whether robots have rights.

JEFFREY L. KRICHMAR is an Associate Professor in the Department of Cognitive Sciences and Computer Science at the University of California, Irvine. His research interests include neurorobotics, embodied cognition, biologically plausible models of learning and memory, and the effect of neural architecture on neural function.

HIROAKI WAGATSUMA is an Associate Professor in the Department of Brain Science and Engineering at Kyushu Institute of Technology (KYUTECH) in Japan. His research interests include theoretical modeling of brain oscillations, the memory integration process of experienced episodes, and the implementation of oscillatory neural networks into neurorobotics.
Neuromorphic and Brain-Based Robots

Edited by

JEFFREY L. KRICHMAR
University of California, Irvine, USA

HIROAKI WAGATSUMA
Kyushu Institute of Technology, Japan
Contents

<table>
<thead>
<tr>
<th>List of contributors</th>
<th>page vii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xi</td>
</tr>
</tbody>
</table>

Part I Introduction

1. History and potential of neuromorphic robotics
 Jeffrey L. Krichmar and Hiroaki Wagatsuma

Part II Neuromorphic robots: biologically and neurally inspired designs

2. Robust haptic recognition by anthropomorphic robot hand
 Koh Hosoda

3. Biomimetic robots as scientific models: a view from the whisker tip
 Ben Mitchinson, Martin J. Pearson, Anthony G. Pipe, and Tony J. Prescott

4. Sensor-rich robots driven by real-time brain circuit algorithms
 Andrew Felch and Richard Granger

Part III Brain-based robots: architectures and approaches

5. The RatSLAM project: robot spatial navigation
 Gordon Wyeth, Michael Milford, Ruth Schulz, and Janet Wiles

6. Evolution of rewards and learning mechanisms in Cyber Rodents
 Eiji Uchibe and Kenji Doya

7. A neuromorphically inspired architecture for cognitive robots
 Mitch Wilkes, Erdem Erdemir, and Kazuhiko Kawamura

8. Autonomous visuomotor development for neuromorphic robots
 Zhengping Ji, Juyang Weng, and Danil Prokhorov

9. Brain-inspired robots for autistic training and care
 Emilia I. Barakova and Loe Feijs
Contents

Part IV Philosophical and theoretical considerations

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>From hardware and software to kernels and envelopes: a concept shift for robotics, developmental psychology, and brain sciences</td>
<td>217</td>
</tr>
<tr>
<td></td>
<td>Frédéric Kaplan and Pierre-Yves Oudeyer</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Can cognitive developmental robotics cause a paradigm shift?</td>
<td>251</td>
</tr>
<tr>
<td></td>
<td>Minoru Asada</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>A look at the hidden side of situated cognition: a robotic study of brain-oscillation-based dynamics of instantaneous, episodic, and conscious memories</td>
<td>274</td>
</tr>
<tr>
<td></td>
<td>Hiroaki Wagatsuma</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>The case for using brain-based devices to study consciousness</td>
<td>303</td>
</tr>
<tr>
<td></td>
<td>Jason G. Fleischer, Jeffrey L. McKinstry, David B. Edelman, and Gerald M. Edelman</td>
<td></td>
</tr>
</tbody>
</table>

Part V Ethical considerations

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Ethical implications of intelligent robots</td>
<td>323</td>
</tr>
<tr>
<td></td>
<td>George A. Bekey, Patrick Lin, and Keith Abney</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Toward robot ethics through the ethics of autism</td>
<td>345</td>
</tr>
<tr>
<td></td>
<td>Masayoshi Shibata</td>
<td></td>
</tr>
</tbody>
</table>

Index 362
Contributors

Keith Abney
Philosophy Department, California Polytechnic State University, San Luis Obispo, CA, USA

Minoru Asada
Adaptive Machine Systems, Osaka University, Osaka, Japan

Emilia I. Barakova
Faculty of Industrial Design, Eindhoven University of Technology, Eindhoven, The Netherlands

George A. Bekey
Department of Computer Science, University of Southern California, Los Angeles, CA, USA, and College of Engineering, California Polytechnic University, San Luis Obispo, CA, USA

Kenji Doya
Neural Computation Unit, Okinawa Institute of Science and Technology, Kunigami, Japan

David B. Edelman
The Neurosciences Institute, San Diego, CA, USA

Gerald M. Edelman
The Neurosciences Institute, San Diego, CA, USA

Erdem Erdemir
Center for Intelligent Systems, Vanderbilt University, Nashville, TN, USA

Loe Feijs
Faculty of Industrial Design, Eindhoven University of Technology, Eindhoven, The Netherlands

Andrew Felch
Cognitive Electronics, Hanover, NH, USA
List of contributors

Jason G. Fleischer
The Neurosciences Institute, San Diego, CA, USA

Richard Granger
Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA

Koh Hosoda
Department of Multimedia Engineering, Osaka University, Osaka, Japan

Zhengping Ji
Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, USA

Frédéric Kaplan
EPFL-CRAFT, Lausanne, Switzerland

Kazuhiko Kawamura
Department of Electrical Engineering & Computer Science, Vanderbilt University, Nashville, TN, USA

Jeffrey L. Krichmar
Department of Cognitive Sciences, University of California, Irvine, CA, USA

Patrick Lin
Philosophy Department, California Polytechnic State University, San Luis Obispo, CA, USA

Jeffrey L. McKinstry
The Neurosciences Institute, San Diego, CA, USA

Michael Milford
School of Engineering Systems, Queensland University of Technology, Brisbane, Australia

Ben Mitchinson
Department of Psychology, University of Sheffield, Sheffield, UK

Pierre-Yves Oudeyer
INRIA Futur, Talence, France

Martin J. Pearson
Bristol Robotics Laboratory, Bristol, UK

Anthony G. Pipe
Bristol Robotics Laboratory, Bristol, UK
List of contributors

Tony J. Prescott
Department of Psychology, University of Sheffield, Sheffield, UK

Danil Prokhorov
Toyota Technical Center, Ann Arbor, MI, USA

Ruth Schulz
School of Information Technology & Electrical Engineering, The University of Queensland, St Lucia, Australia

Masayoshi Shibata
Faculty of Letters, Kanazawa University, Kanazawa, Japan

Eiji Uchibe
Neural Computation Unit, Okinawa Institute of Science and Technology, Kunigami, Japan

Hiroaki Wagatsuma
Department of Brain Science and Engineering, Kyushu Institute of Technology, Kitakyushu, Japan

Juyang Weng
Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, USA

Janet Wiles
School of Information Technology & Electrical Engineering, The University of Queensland, St Lucia, Australia

Mitch Wilkes
Department of Electrical Engineering & Computer Science, Vanderbilt University, Nashville, TN, USA

Gordon Wyeth
Queensland University of Technology, Brisbane, Australia
Preface

The genesis for this book came about from a series of conversations, over a period of several years, between Jeff Krichmar and Hiro Wagatsuma. Initially, these conversations began when Krichmar was at The Neurosciences Institute in San Diego and Wagatsuma was at the Riken Brain Science Institute near Tokyo. They included discussions at each other’s institutes, several conversations and workshops at conferences, and an inspiring trip to a Robotics Exhibition at the National Museum of Nature and Science in Tokyo. In these conversations, we realized that we shared a passion for understanding the inner workings of the brain through computational neuroscience and embodied models. Moreover, we realized that: (1) there was a small, but growing, community of like-minded individuals around the world, and (2) there was a need to publicize this line of research to attract more scientists to this young field. Therefore, we contacted many of the top researchers around the world in Neuromorphic and Brain-Based Robotics. The requirements were that the researchers should be interested in some aspect of the brain sciences, and were using robotic devices as an experimental tool to further our understanding of the brain. We have been thrilled at the positive response. We know we have not included everyone in this field and apologize for any omissions. However, we feel that the contributed chapters in this book are representative of the most important areas in this line of research, and that they represent the state-of-the-art in the field at this time. We sincerely hope this book will inspire and attract a new generation of neuromorphic and brain-based roboticists.

JLK – To Tom Vogl, my mentor and advisor.
HW – To Natsue Sekiguchi, my lifelong supporter and advisor.