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Inputs to the Standard Model

This book is about the Standard Model of elementary particle physics. If we set
the beginning of the modern era of particle physics in 1947, the year the pion was
discovered, then the ensuing years of research have revealed the existence of a con-
sistent, self-contained layer of reality. The energy range which defines this layer of
reality extends up to about 1 TeV or, in terms of length, down to distances of order
10−17 cm. The Standard Model is a field-theoretic description of strong and electro-
weak interactions at these energies. It requires the input of as many as 28 inde-
pendent parameters.1 These parameters are not explained by the Standard Model;
their presence implies the need for an understanding of Nature at an even deeper
level. Nonetheless, processes described by the Standard Model possess a remark-
able insulation from signals of such New Physics. Although the strong interactions
remain a calculational challenge, the Standard Model (generalized from its original
form to include neutrino mass) would appear to have sufficient content to describe
all existing data.2 Thus far, it is a theoretical structure which has worked splendidly.

I–1 Quarks and leptons

The Standard Model is an SU(3) × SU(2) × U(1) gauge theory which is spon-
taneously broken by the Higgs potential. Table I–1 displays mass determinations
[RPP 12] of the Z0 and W± gauge bosons, the Higgs boson H 0, and the existing
mass limit on the photon γ .

In the Standard Model, the fundamental fermionic constitutents of matter are the
quarks and the leptons. Quarks, but not leptons, engage in the strong interactions
as a consequence of their color charge. Each quark and lepton has spin one-half.

1 There are six lepton masses, six quark masses, three gauge coupling constants, three quark-mixing angles
and one complex phase, three neutrino-mixing angles and as many as three complex phases, a Higgs mass
and quartic coupling constant, and the QCD vacuum angle.

2 Admittedly, at this time the sources of dark matter and of dark energy are unknown.
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2 Inputs to the Standard Model

Table I–1. Boson masses.

Particle Mass (GeV/c2)

γ < 1× 10−27

W± 80.385± 0.015
Z0 91.1876± 0.0021
H 0 126.0± 0.4

Collectively, they display conventional Fermi–Dirac statistics. No attempt is made
in the Standard Model either to explain the variety and number of quarks and lep-
tons or to compute any of their properties. That is, these particles are taken at this
level as truly elementary. This is not unreasonable. There is no experimental evi-
dence for quark or lepton compositeness, such as excited states or form factors
associated with intrinsic structure.

Quarks

There are six quarks, which fall into two classes according to their electrical charge
Q. The u, c, t quarks have Q= 2e/3 and the d, s, b quarks have Q= − e/3,
where e is the electric charge of the proton. The u, c, t and d, s, b quarks
are eigenstates of the hamiltonian (‘mass eigenstates’). However, because they are
believed to be permanently confined entities, some thought must go into properly
defining quark mass. Indeed, several distinct definitions are commonly used. We
defer a discussion of this issue and simply note that the values in Table I–2 provide

Table I–2. The quarks.

Flavor Massa (GeV/c2) Charge I3 S C B T

u (2.55+0.75
−1.05)× 10−3 2e/3 1/2 0 0 0 0

d (5.04+0.96
−1.54)× 10−3 −e/3 −1/2 0 0 0 0

s 0.105+0.025
−0.035 −e/3 0 −1 0 0 0

c 1.27+0.07
−0.11 2e/3 0 0 1 0 0

b 4.20+0.17
−0.07 −e/3 0 0 0 −1 0

t 173.4± 1.6 2e/3 0 0 0 0 1

aThe t-quark mass is inferred from top quark events. All others are determined in MS
renormalization (cf. Sect. II–1) at scales mu,d,s(2 GeV/c2), mc(mc) and mb(mb) respec-
tively.
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I–1 Quarks and leptons 3

Table I–3. The leptons.

Flavor Mass (GeV/c2) Charge Le Lμ Lτ

νe < 0.2× 10−8 0 1 0 0
e 5.10998928(11)× 10−4 −e 1 0 0
νμ < 1.9× 10−4 0 0 1 0
μ 0.1056583715(35) −e 0 1 0
ντ < 0.0182 0 0 0 1
τ 1.77682(16) −e 0 0 1

an overview of the quark mass spectrum. A useful benchmark for quark masses is
the energy scale QCD(� several hundred MeV) associated with the confinement
phenomenon. Relative to QCD, the u, d, s quarks are light, the b, t quarks are
heavy, and the c quark has intermediate mass. The dynamical behavior of light
quarks is described by the chiral symmetry of massless particles (cf. Chap. VI)
whereas heavy quarks are constrained by the so-called Heavy Quark Effective
Theory (cf. Sect. XIII–3). Each quark is said to constitute a separate flavor, i.e.
six quark flavors exist in Nature. The s, c, b, t quarks carry respectively the
quantum numbers of strangeness (S), charm (C), bottomness (B), and topness (T ).
The u, d quarks obey an SU (2) symmetry (isospin) and are distinguished by the
three-component of isospin (I3). The flavor quantum numbers of each quark are
displayed in Table I–2.

Leptons

There are six leptons which fall into two categories according to their electrical
charge. The charged leptons e, μ, τ have Q= − e and the neutrinos νe, νμ, ντ
have Q= 0. Leptons are also classified in terms of three lepton types: electron
(νe, e), muon (νμ, μ), and tau (ντ , τ ). This follows from the structure of the charged
weak interactions (cf. Sect. II–3) in which these charged-lepton/neutrino pairs are
coupled to W± gauge bosons. Associated with each lepton type is a lepton number
Le, Lμ,Lτ . Table I–3 summarizes lepton properties.

At this time, there is only incomplete knowledge of neutrino masses. Information
on the mass parameters mνe,mνμ,mντ is obtained from their presence in various
weak transition amplitudes. For example, the single beta decay experiment 3H →
3He+e−+νe is sensitive to the massmνe . In like manner, one constrains the masses
mνμ and mντ in processes such as π+ → μ+ + νμ and τ− → 2π− + π+ + ντ

respectively. Existing bounds on these masses are displayed in Table I–3.
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4 Inputs to the Standard Model

It is known experimentally that upon creation the neutrinos {να} ≡ (νe.νμ, ντ )

will not propagate indefinitely but will instead mix with each other. This means that
the basis of states {να} cannot be eigenstates of the hamiltonian. Diagonalization
of the leptonic hamiltonian is carried out in Sect. VI–2 and yields the basis {νi} ≡
{ν1, ν2, ν3} of mass eigenstates. Information on the neutrino mass eigenvalues
m1,m2,m3 is obtained from neutrino oscillation experiments and cosmological
studies. Oscillation experiments (cf. Sects. VI–3,VI–4) are sensitive to squared-
mass differences.3 Throughout the book, we adhere to the following relations,

definition: �m2
ij ≡ m2

i −m2
j , convention: m2 > m1. (1.1)

From the compilation in [RPP 12], the squared-mass difference |�m2
32| deduced

from the study of atmospheric and accelerator neutrinos gives

|�m2
32| = 2.32+0.12

−0.08 × 10−3 eV2, (1.2a)

whereas data from solar and reactor neutrinos imply a squared-mass difference
roughly 31 times smaller,

�m2
21 = (7.50± 0.20)× 10−5 eV2. (1.2b)

Thus the neutrinos ν1 and ν2 form a quasi-doublet. One speaks of a normal or
inverted neutrino mass spectrum, respectively, for the cases4

normal: m3 > m1,2, inverted: m1,2 > m3. (1.2c)

Since the largest neutrino mass mlgst, be it m2 or m3, cannot be lighter than the
mass splitting of Eq. (1.2), we have the bound mlgst > 0.049 eV. Finally, a com-
bination of cosmological inputs can be employed to bound the neutrino mass sum∑3

i= 1 mi , the precise bound depending on the chosen input data set. In one exam-
ple [deP et al. 12], photometric redshifts measured from a large galaxy sample, cos-
mic microwave background (CMB) data and a recent determination of the Hubble
parameter are used to obtain the bound

m1 +m2 +m3 < 0.26 eV, (1.3a)

whereas data from the CMB combined with that from baryon acoustic oscillations
yields [Ad et al. (Planck collab.) 13]

m1 +m2 +m3 < 0.23 eV. (1.3b)

A further discussion of the neutrino mass spectrum appears in Sect. VI–4.

3 Only two of the mass differences can be independent, so �m2
12 +�m2

23 +�m2
31= 0.

4 There is also the possibility of a quasi-degenerate neutrino mass spectrum (m1 � m2 � m3), which can be
thought of as a limiting case of both the normal and inverted cases in which the individual masses are
sufficiently large to dwarf the |�m2

32| splitting.
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I–2 Chiral fermions 5

Quark and lepton numbers

Individual quark and lepton numbers are known to be not conserved, but for dif-
ferent reasons and with different levels of nonconservation. Individual quark num-
ber is not conserved in the Standard Model due to the charged weak interactions
(cf. Sect. II–3). Indeed, quark transitions of the type qi → qj + W± induce the
decays of most meson and baryon states and have led to the phenomenology of
Flavor Physics. Individual lepton number is not conserved, as evidenced by the
observed να ↔ νβ (α, β = e, μ, τ) oscillations. This source of this phenomenon is
associated with nonzero neutrino masses. There is currently no additional evidence
for the violation of individual lepton number despite increasingly sensitive limits
such as the branching fraction Bμ−→e−e−e+ < 1.0× 10−12.

Existing data are consistent with conservation of total quark and total lepton
number, e.g. the proton lifetime bound τp > 2.1×1029 yr [RPP 12] and the nuclear
half-life limit t0νββ1/2 [136Xe] > 1.6×1025 yr [Ac et al. (EXO-200 collab.) 11]. These
conservation laws are empirical. They are not required as a consequence of any
known dynamical principle and in fact are expected to be violated by certain non-
perturbative effects within the Standard Model (associated with quantum tunneling
between topologically inequivalent vacua – see Sect. III–6).

I–2 Chiral fermions

Consider a world in which quarks and leptons have no mass at all. At first, this
would appear to be a surprising supposition. To an experimentalist, mass is the
most palpable property a particle has. It is why, say, a muon behaves differently
from an electron in the laboratory. Nonetheless, the massless limit is where the
Standard Model begins.

The massless limit

Let ψ(x) be a solution to the Dirac equation for a massless particle,

i/∂ ψ = 0. (2.1)

We can multiply this equation from the left by γ5 and use the anticommutativity of
γ5 with γ μ to obtain another solution,

i/∂ γ5ψ = 0. (2.2)

We superpose these solutions to form the combinations

ψL = 1

2
(1+ γ5)ψ, ψR = 1

2
(1− γ5)ψ, (2.3)
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6 Inputs to the Standard Model

where ‘1’ represents the unit 4× 4 matrix. The quantities ψL and ψR are solutions
of definite chirality (i.e. handedness). For a massless particle moving with precise
momentum, these solutions correspond respectively to the spin being anti-aligned
(left-handed) and aligned (right-handed) relative to the momentum. In other words,
chirality coincides with helicity for zero-mass particles. The matrices �L

R
= (1 ±

γ5)/2 are chirality projection operators. They obey the usual projection operator
conditions under addition,

�L + �R = 1, (2.4)

and under multiplication,

�L�L = �L, �R�R = �R, �L�R = �R�L = 0. (2.5)

In the massless limit, a particle’s chirality is a Lorentz-invariant concept. For
example, a particle which is left-handed to one observer will appear left-handed to
all observers. Thus chirality is a natural label to use for massless fermions, and a
collection of such particles may be characterized according to the separate numbers
of left-handed and right-handed particles.

It is simple to incorporate chirality into a lagrangian formalism. The lagrangian
for a massless noninteracting fermion is

L = iψ /∂ ψ, (2.6)

or in terms of chiral fields,

L = LL + LR, (2.7)

where

LL,R = iψL,R/∂ ψL,R. (2.8)

The lagrangians LL,R are invariant under the global chiral phase transformations

ψL,R(x)→ exp(−iαL,R)ψL,R(x), (2.9)

where the phases αL,R are constant and real-valued but otherwise arbitrary. Antici-
pating the discussion of Noether’s theorem in Sect. I–4, we can associate conserved
particle-number current densities JμL,R,

J
μ

L,R = ψL,Rγ
μψL,R (∂μJ

μ

L,R = 0), (2.10)

with this invariance. From these chiral current densities, we can construct the vector
current V μ(x),

V μ = J
μ

L + JμR (2.11)

and the axial-vector current Aμ(x),
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I–2 Chiral fermions 7

Aμ = J
μ

L − JμR . (2.12)

Chiral charges QL,R are defined as spatial integrals of the chiral charge densities,

QL,R(t) =
∫
d3x J 0

L,R(x), (2.13)

and represent the number operators for the chiral fields ψL,R. They are time-
independent if the chiral currents are conserved. One can similarly define the vector
charge Q and the axial-vector charge Q5,

Q(t) =
∫
d3x V 0(x), Q5(t) =

∫
d3x A0(x). (2.14)

The vector charge Q is the total number operator,

Q = QR +QL, (2.15)

whereas the axial-vector charge is the number operator for the difference

Q5 = QL −QR. (2.16)

The vector charge Q and axial-vector charge Q5 simply count the sum and differ-
ence, respectively, of the left-handed and right-handed particles.

Parity, time reversal, and charge conjugation

The field transformations of Eq. (2.9) involve parameters αL,R which can take on
a continuum of values. In addition to such continuous field mappings, one often
encounters a variety of discrete transformations as well. Let us consider the oper-
ations of parity

x = (x0, x)→ xP = (x0,−x), (2.17)

and of time reversal

x = (x0, x)→ xT = (−x0, x), (2.18)

as defined by their effects on spacetime coordinates. The effect of discrete trans-
formations on a fermion field ψ(x) will be implemented by a unitary operator P
for parity and an antiunitary operator T for time reversal. In the representation of
Dirac matrices used in this book, we have

Pψ(x)P−1 = γ 0ψ(xP ), T ψ(x)T −1 = iγ 1γ 3ψ(xT ). (2.19)

An additional operation typically considered in conjunction with parity and time
reversal is that of charge conjugation, the mapping of matter into antimatter,

Cψ(x)C−1 = iγ 2γ 0ψ
T
(x), (2.20)
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8 Inputs to the Standard Model

Table I–4. Response of Dirac bilinears to
discrete mappings.

C P T

S(x) S(xP ) S(xT )
P (x) −P(xP ) −P(xT )
−Jμ(x) Jμ(xP ) Jμ(xT )

J
μ
5 (x) −J5μ(xP ) J5μ(xT )
−T μν(x) Tμν(xP ) −Tμν(xT )

where ψ
T

β ≡ ψ†
αγ

0
αβ (α, β = 1, . . . , 4). The spacetime coordinates of field ψ(x) are

unaffected by charge conjugation.
In the study of discrete transformations, the response of the normal-ordered

Dirac bilinears

S(x) = : ψ(x)ψ(x) : P(x) = : ψ(x)γ5ψ(x) :
Jμ(x) = : ψ(x)γ μψ(x) : J

μ

5 (x) = : ψ(x)γ μγ5ψ(x) :
T μν(x) = : ψ(x)σμνψ(x) :

(2.21)

is of special importance to physical applications. Their transformation properties
appear in Table I–4. Close attention should be paid there to the location of the
indices in these relations. Another example of a field’s response to these discrete
transformations is that of the photon Aμ(x),

C Aμ(x) C−1 c = −Aμ(x), P Aμ(x) P−1 = Aμ(xP ),

T Aμ(x) T −1 c = Aμ(xT ).
(2.22)

Beginning with the discussion of Noether’s theorem in Sect. 1–4, we shall explore
the topic of invariance throughout much of this book. It suffices to note here that
the Standard Model, being a theory whose dynamical content is expressed in terms
of hermitian, Lorentz-invariant lagrangians of local quantum fields, is guaranteed
to be invariant under the combined operation CPT . Interestingly, however, these
discrete transformations are individually symmetry operations only of the strong
and electromagnetic interactions, but not of the full electroweak sector. We see
already the possibility for such behavior in the occurrence of chiral fermions ψL,R,
since parity maps the fields ψL,R into each other,

ψL,R → P ψL,R(x) P
−1 = γ 0ψR,L(xP ). (2.23)

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-76867-2 - Dynamics of  the Standard  Model: Second Edition
John F. Donoghue, Eugene Golowich and Barry R. Holstein
Excerpt
More information

http://www.cambridge.org/9780521768672
http://www.cambridge.org
http://www.cambridge.org


I–3 Fermion mass 9

Thus any effect, like the weak interaction, which treats left-handed and right-
handed fermions differently, will lead inevitably to parity-violating phenomena.

I–3 Fermion mass

Although the discussion of chiral fermions is cast in the limit of zero mass, fermions
in Nature do in fact have nonzero mass and we must account for this. In a lagran-
gian, a mass term will appear as a hermitian, Lorentz-invariant bilinear in the fields.
For fermion fields, these conditions allow realizations referred to as Dirac mass and
Majorana mass.5

Dirac mass

The Dirac mass term for fermion fieldsψL,R involves the bilinear coupling of fields
with opposite chirality

−LD = mD[ ψLψR + ψRψL ] = mD ψψ (3.1)

where ψ ≡ ψL + ψR and mD is the Dirac mass. The Dirac mass term is invari-
ant under the phase transformation ψ(x) → exp(−iα)ψ(x) and thus does not
upset conservation of the vector current V μ=ψγμψ and the corresponding num-
ber fermion operator Q of Eq. (2.15). All fields in the Standard Model, save pos-
sibly for the neutrinos, have Dirac masses obtained from their interaction with the
Higgs field (cf. Sects. II–3, II–4). Although right-handed neutrinos have no cou-
plings to the Standard Model gauge bosons, there is no principle prohibiting their
interaction with the Higgs field and thus generating neutrino Dirac masses in the
same manner as the other particles.

Majorana mass

A Majorana mass term is one which violates fermion number by coupling two
fermions (or two antifermions). In the Majorana construction, use is made of the
charge-conjugate fields,

ψc ≡ Cγ 0ψ∗, (ψL,R)
c = (�L,Rψ)

c, (3.2)

where C is the charge-conjugation operator, obeying

C = −C−1 = −C† = −CT . (3.3)

In the Dirac representation of gamma matrices (cf. App. C), one has C= iγ 2γ 0.
Some useful identities involving ψc include

5 We suppress spacetime dependence of the fields in this section.
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10 Inputs to the Standard Model

(ψc
i ) ψj = ψT

i C ψj , ψi ψ
c
j = −ψ∗Ti C ψ∗j ,(

(ψc
i ) ψj

)† = ψj ψ
c
i ,

(
ψT
i C ψj

)† = −ψ∗Tj C ψ∗i ,
(ψc

i ) ψ
c
j = ψj ψi, (ψc

i ) γ
μ ψc

j = −ψj γ μ ψi,
(ψc

R) ψL = 0, (ψc
R) γ

μ ψR = 0.

(3.4)

The two identities in the bottom line follow from �RC�L= 0.
The possibility of a Majorana mass term follows from the fact that a combination

of two fermion fields ψTCψ is an invariant under Lorentz transformations. Two
equivalent expressions for a Majorana mass term involving chiral fields ψL,R are6

−LM = mL,R

2

[
(ψL,R)c ψL,R + ψL,R (ψL,R)c

]
= mL,R

2

[
(ψL,R)

T CψL,R − (ψ∗L,R)T Cψ∗L,R
]
.

(3.5)

Because the cross combination (ψR)T CψL= 0, the Majorana mass terms involves
either two left-chiral fields or two right-chiral fields, and the left-chiral and right-
chiral masses are independent. Treating ψ and ψ∗ as independent variables, the
resulting equations of motion are

i/∂ ψR −mR ψ
c
R = 0, i/∂ ψc

R −mR ψR = 0, (3.6)

with a similar set of equations for ψL. Iteration of these coupled equations shows
that mR indeed behaves as a mass.

A Majorana mass term clearly does not conserve fermion number and mixes
the particle with its antiparticle. Indeed, a Majorana fermion can be identified with
its own antiparticle. This can be seen, using ψR as an example, by rewriting the
lagrangian in terms of the self-conjugate field

ψM = 1√
2

[
ψR + ψc

R

]
, (3.7)

which, given the equations of motion above, will clearly satisfy the Dirac equa-
tion. The total Majorana lagrangian can be simply rewritten in terms of this self-
conjugate field as

L(R)KE + L(R)M = ψRi/∂ ψR −
mR

2

[
(ψR)c ψR + ψR (ψR)c

]
= ψMi/∂ ψM −mRψM ψM

= ψT
MCi/∂ ψM −mRψ

T
MC ψM,

(3.8)

6 The factor of 1/2 with the Majorana mass parameters m(M)
L,R

compensates for a factor of 2 encountered in
taking the matrix element of the Majorana mass term.
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