
1 Introduction

1.1 WHAT IS A MONTE CARLO SIMULATION?

In a Monte Carlo simulation we attempt to follow the ‘time dependence’ of a

model for which change, or growth, does not proceed in some rigorously

predefined fashion (e.g. according to Newton’s equations of motion) but

rather in a stochastic manner which depends on a sequence of random

numbers which is generated during the simulation. With a second, different

sequence of random numbers the simulation will not give identical results

but will yield values which agree with those obtained from the first sequence

to within some ‘statistical error’. A very large number of different problems

fall into this category: in percolation an empty lattice is gradually filled with

particles by placing a particle on the lattice randomly with each ‘tick of the

clock’. Lots of questions may then be asked about the resulting ‘clusters’

which are formed of neighboring occupied sites. Particular attention has

been paid to the determination of the ‘percolation threshold’, i.e. the critical

concentration of occupied sites for which an ‘infinite percolating cluster’ first

appears. A percolating cluster is one which reaches from one boundary of a

(macroscopic) system to the opposite one. The properties of such objects are

of interest in the context of diverse physical problems such as conductivity of

random mixtures, flow through porous rocks, behavior of dilute magnets,

etc. Another example is diffusion limited aggregation (DLA) where a particle

executes a random walk in space, taking one step at each time interval, until

it encounters a ‘seed’ mass and sticks to it. The growth of this mass may then

be studied as many random walkers are turned loose. The ‘fractal’ properties

of the resulting object are of real interest, and while there is no accepted

analytical theory of DLA to date, computer simulation is the method of

choice. In fact, the phenomenon of DLA was first discovered by Monte

Carlo simulation!

Considering problems of statistical mechanics, we may be attempting to

sample a region of phase space in order to estimate certain properties of the

model, although we may not be moving in phase space along the same path

which an exact solution to the time dependence of the model would yield.

Remember that the task of equilibrium statistical mechanics is to calculate

thermal averages of (interacting) many-particle systems: Monte Carlo simu-

lations can do that, taking proper account of statistical fluctuations and their
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effects in such systems. Many of these models will be discussed in more

detail in later chapters so we shall not provide further details here. Since the

accuracy of a Monte Carlo estimate depends upon the thoroughness with

which phase space is probed, improvement may be obtained by simply

running the calculation a little longer to increase the number of samples.

Unlike in the application of many analytic techniques (e.g. perturbation

theory for which the extension to higher order may be prohibitively diffi-

cult), the improvement of the accuracy of Monte Carlo results is possible not

just in principle but also in practice!

1.2 WHAT PROBLEMS CAN WE SOLVE WITH IT?

The range of different physical phenomena which can be explored using

Monte Carlo methods is exceedingly broad. Models which either naturally or

through approximation can be discretized can be considered. The motion of

individual atoms may be examined directly; e.g. in a binary (AB) metallic

alloy where one is interested in interdiffusion or unmixing kinetics (if the

alloy was prepared in a thermodynamically unstable state) the random hop-

ping of atoms to neighboring sites can be modeled directly. This problem is

complicated because the jump rates of the different atoms depend on the

locally differing environment. Of course, in this description the quantum

mechanics of atoms with potential barriers in the eV range is not explicitly

considered, and the sole effect of phonons (lattice vibrations) is to provide

a ‘heat bath’ which provides the excitation energy for the jump events.

Because of a separation of time scales (the characteristic times between

jumps are orders of magnitude larger than atomic vibration periods) this

approach provides very good approximation. The same kind of arguments

hold true for growth phenomena involving macroscopic objects, such as

DLA growth of colloidal particles; since their masses are orders of magni-

tude larger than atomic masses, the motion of colloidal particles in fluids is

well described by classical, random Brownian motion. These systems are

hence well suited to study by Monte Carlo simulations which use random

numbers to realize random walks. The motion of a fluid may be studied by

considering ‘blocks’ of fluid as individual particles, but these blocks will be

far larger than individual molecules. As an example, we consider ‘micelle

formation’ in lattice models of microemulsions (water–oil–surfactant fluid

mixtures) in which each surfactant molecule may be modeled by two

‘dimers’ on the lattice (two occupied nearest neighbor sites on the lattice).

Different effective interactions allow one dimer to mimic the hydrophilic

group and the other dimer the hydrophobic group of the surfactant mol-

ecule. This model then allows the study of the size and shape of the aggre-

gates of surfactant molecules (the micelles) as well as the kinetic aspects of

their formation. In reality, this process is quite slow so that a deterministic

molecular dynamics simulation (i.e. numerical integration of Newton’s

second law) is not feasible. This example shows that part of the ‘art’ of
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simulation is the appropriate choice (or invention!) of a suitable (coarse-

grained) model. Large collections of interacting classical particles are directly

amenable to Monte Carlo simulation, and the behavior of interacting quan-

tized particles is being studied either by transforming the system into a

pseudo-classical model or by considering permutation properties directly.

These considerations will be discussed in more detail in later chapters.

Equilibrium properties of systems of interacting atoms have been extensively

studied as have a wide range of models for simple and complex fluids, mag-

netic materials, metallic alloys, adsorbed surface layers, etc. More recently

polymer models have been studied with increasing frequency; note that the

simplest model of a flexible polymer is a random walk, an object which is well

suited for Monte Carlo simulation. Furthermore, some of the most significant

advances in understanding the theory of elementary particles have been made

using Monte Carlo simulations of lattice gauge models.

1.3 WHAT DIFFICULTIES WILL WE
ENCOUNTER?

1.3.1 Limited computer time andmemory

Because of limits on computer speed there are some problems which are

inherently not suited to computer simulation at this time. A simulation

which requires years of cpu time on whatever machine is available is simply

impractical. Similarly a calculation which requires memory which far exceeds

that which is available can be carried out only by using very sophisticated

programming techniques which slow down running speeds and greatly

increase the probability of errors. It is therefore important that the user first

consider the requirements of both memory and cpu time before embarking on a

project to ascertain whether or not there is a realistic possibility of obtaining

the resources to simulate a problem properly. Of course, with the rapid

advances being made by the computer industry, it may be necessary to wait

only a few years for computer facilities to catch up to your needs. Sometimes

the tractability of a problem may require the invention of a new, more efficient

simulation algorithm. Of course, developing new strategies to overcome such

difficulties constitutes an exciting field of research by itself.

1.3.2 Statistical and other errors

Assuming that the project can be done, there are still potential sources of

error which must be considered. These difficulties will arise in many differ-

ent situations with different algorithms so we wish to mention them briefly at

this time without reference to any specific simulation approach. All compu-

ters operate with limited word length and hence limited precision for numer-

ical values of any variable. Truncation and round-off errors may in some

cases lead to serious problems. In addition there are statistical errors which
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arise as an inherent feature of the simulation algorithm due to the finite

number of members in the ‘statistical sample’ which is generated. These

errors must be estimated and then a ‘policy’ decision must be made, i.e.

should more cpu time be used to reduce the statistical errors or should the

cpu time available be used to study the properties of the system under other

conditions. Lastly there may be systematic errors. In this text we shall not

concern ourselves with tracking down errors in computer programming –

although the practitioner must make a special effort to eliminate any such

errors! – but with more fundamental problems. An algorithm may fail to

treat a particular situation properly, e.g. due to the finite number of particles

which are simulated, etc. These various sources of error will be discussed in

more detail in later chapters.

1.4 WHAT STRATEGY SHOULD WE FOLLOW IN
APPROACHING A PROBLEM?

Most new simulations face hidden pitfalls and difficulties which may not be

apparent in early phases of the work. It is therefore often advisable to begin with

a relatively simple program and use relatively small system sizes and modest

running times. Sometimes there are special values of parameters for which the

answers are already known (either from analytic solutions or from previous,

high quality simulations) and these cases can be used to test a new simulation

program. By proceeding in this manner one is able to uncover which are the

parameter ranges of interest and what unexpected difficulties are present. It is

then possible to refine the program and then to increase running times. Thus

both cpu time and human time can be used most effectively. It makes little sense

of course to spend a month to rewrite a computer programwhichmay result in a

total saving of only a few minutes of cpu time. If it happens that the outcome of

such test runs shows that a new problem is not tractable with reasonable effort, it

may be desirable to attempt to improve the situation by redefining the model or

redirect the focus of the study. For example, in polymer physics the study of

short chains (oligomers) by a given algorithm may still be feasible even though

consideration of huge macromolecules may be impossible.

1.5 HOW DO SIMULATIONS RELATE TO
THEORY AND EXPERIMENT?

In many cases theoretical treatments are available for models for which there

is no perfect physical realization (at least at the present time). In this situa-

tion the only possible test for an approximate theoretical solution is to

compare with ‘data’ generated from a computer simulation. As an example

we wish to mention recent activity in growth models, such as diffusion

limited aggregation, for which a very large body of simulation results already

exists but for which extensive experimental information is just now becoming
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available. It is not an exaggeration to say that interest in this field was created

by simulations. Even more dramatic examples are those of reactor meltdown

or large scale nuclear war: although we want to know what the results of such

events would be, we do not want to carry out experiments! There are also real

physical systems which are sufficiently complex that they are not presently

amenable to theoretical treatment. An example is the problem of understand-

ing the specific behavior of a system with many competing interactions and

which is undergoing a phase transition. A model Hamiltonian which is

believed to contain all the essential features of the physics may be proposed,

and its properties may then be determined from simulations. If the simulation

(which now plays the role of theory) disagrees with experiment, then a new

Hamiltonian must be sought. An important advantage of the simulations is

that different physical effects which are simultaneously present in real systems

may be isolated and, through separate consideration by simulation, may provide

a much better understanding. Consider, for example, the phase behavior of

polymer blends – materials which have ubiquitous applications in the plastics

industry. The miscibility of different macromolecules is a challenging problem

in statistical physics in which there is a subtle interplay between complicated

enthalpic contributions (strong covalent bonds compete with weak van der

Waals forces, and Coulombic interactions and hydrogen bonds may be present

as well) and entropic effects (configurational entropy of flexible macro-

molecules, entropy ofmixing, etc.). Realmaterials are very difficult to understand

because of various asymmetries between the constituents of such mixtures (e.g.

in shape and size, degree of polymerization, flexibility, etc.). Simulations of

simplified models can ‘switch off’ or ‘switch on’ these effects and thus deter-

mine the particular consequences of each contributing factor. We wish to

emphasize that the aim of simulations is not to provide better ‘curve fitting’

to experimental data than does analytic theory. The goal is to create an under-

standing of physical properties and processes which is as complete as possible,

making use of the perfect control of ‘experimental’ conditions in the ‘computer
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experiment’ and of the possibility to examine every aspect of system config-

urations in detail. The desired result is then the elucidation of the physical

mechanisms that are responsible for the observed phenomena. We therefore

view the relationship between theory, experiment, and simulation to be similar

to those of the vertices of a triangle, as shown in Fig. 1.1: each is distinct, but

each is strongly connected to the other two.

1.6 PERSPECTIVE

TheMonte Carlo method has had a considerable history in physics. As far back

as 1949 a review of the use of Monte Carlo simulations using ‘modern comput-

ing machines’ was presented by Metropolis and Ulam (1949). In addition to

giving examples they also emphasized the advantages of the method. Of course,

in the following decades the kinds of problems they discussed could be treated

with far greater sophistication than was possible in the first half of the twentieth

century, and many such studies will be described in succeeding chapters. Now,

Monte Carlo simulations are reaching into areas that are far afield of physics. In

succeeding chapters we will also provide the reader with a taste of what is

possible with these techniques in other areas of investigation. It is also quite

telling that there are now several software products on the market that perform

simple Monte Carlo simulations in concert with widely distributed spreadsheet

software on PCs.

With the rapidly increasing growth of computer power which we are now

seeing, coupled with the steady drop in price, it is clear that computer simula-

tions will be able to rapidly increase in sophistication to allow more subtle

comparisons to be made. Even now, the combination of new algorithms and

new high performance computing platforms has allowed simulations to be per-

formed for more than 106 (in special cases exceeding 3�1011 (Kadau et al.,

2006)) particles (spins). As a consequence it is no longer possible to view the

system and look for ‘interesting’ phenomena without the use of sophisticated

visualization techniques. The sheer volume of data that we are capable of produ-

cing has also reached unmanageable proportions. In order to permit further

advances in the interpretation of simulations, it is likely that the inclusion of

intelligent ‘agents’ (in the computer science sense) for steering and visualization,

along with new data structures, will be needed. Such topics are beyond the scope

of the text, but the reader should be aware of the need to develop these new

strategies.
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2 Some necessary background

2.1 THERMODYNAMICS AND STATISTICAL
MECHANICS: A QUICK REMINDER

2.1.1 Basic notions

In this chapter we shall review some of the basic features of thermodynamics

and statistical mechanics which will be used later in this book when devising

simulation methods and interpreting results. Many good books on this sub-

ject exist and we shall not attempt to present a complete treatment. This

chapter is hence not intended to replace any textbook for this important field

of physics but rather to ‘refresh’ the reader’s knowledge and to draw atten-

tion to notions in thermodynamics and statistical mechanics which will

henceforth be assumed to be known throughout this book.

2.1.1.1 Partition function

Equilibrium statistical mechanics is based upon the idea of a partition func-

tion which contains all of the essential information about the system under

consideration. The general form for the partition function for a classical

system is

Z ¼
X

all states

e�H=kBT ; ð2:1Þ

where H is the Hamiltonian for the system, T is the temperature, and kB is

the Boltzmann constant. The sum in Eqn. (2.1) is over all possible states of

the system and thus depends upon the size of the system and the number of

degrees of freedom for each particle. For systems consisting of only a few

interacting particles the partition function can be written down exactly with

the consequence that the properties of the system can be calculated in closed

form. In a few other cases the interactions between particles are so simple

that evaluating the partition function is possible.
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Example

Let us consider a system with N particles each of which has only two states, e.g. a

non-interacting Ising model in an external magnetic field H, and which has the

Hamiltonian

H ¼ �H
X
i

�i; ð2:2Þ

where �i ¼ �1. The partition function for this system is simply

Z ¼ e�H=kBT þ eþH=kBT
� �N

; ð2:3Þ
where for a single spin the sum in Eqn. (2.1) is only over two states. The energies

of the states and the resultant temperature dependence of the internal energy

appropriate to this situation are pictured in Fig. 2.1.

Problem 2.1 Work out the average magnetization per spin, using Eqn.
(2.3), for a system of N non-interacting Ising spins in an external magnetic
field. [SolutionM ¼ �ð1=NÞ@F=@H; F ¼ �kBT lnZ ) M ¼ tanhðH=kBTÞ�

There are also a few examples where it is possible to extract exact results for

very large systems of interacting particles, but in general the partition func-

tion cannot be evaluated exactly. Even enumerating the terms in the partition

function on a computer can be a daunting task. Even if we have only 10 000

interacting particles, a very small fraction of Avogadro’s number, with only

two possible states per particle, the partition function would contain 210 000

8 Some necessary background

0

E
N

0

–H–H

+H

Ei ∆

0

1 2 3 4 5 6 7

kBT/H

Fig. 2.1 (left) Energy

levels for the two level

system in Eqn. (2.2);

(right) internal energy

for a two level system

as a function of

temperature.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-76848-1 - A Guide to Monte Carlo Simulations in Statistical Physics, Third Edition
David P. Landau and Kurt Binder
Excerpt
More information

http://www.cambridge.org/9780521768481
http://www.cambridge.org
http://www.cambridge.org


terms! The probability of any particular state of the system is also determined

by the partition function. Thus, the probability that the system is in state � is

given by

P� ¼ e�Hð�Þ=kBT=Z; ð2:4Þ

where Hð�Þ is the Hamiltonian when the system is in the �th state. As we

shall show in succeeding chapters, the Monte Carlo method is an excellent

technique for estimating probabilities, and we can take advantage of this

property in evaluating the results.

2.1.1.2 Free energy, internal energy, and entropy

It is possible to make a direct connection between the partition function and

thermodynamic quantities and we shall now briefly review these relation-

ships. The free energy of a system can be determined from the partition

function (Callen, 1985) from

F ¼ �kBT lnZ ð2:5Þ

and all other thermodynamic quantities can be calculated by appropriate

differentiation of Eqn. (2.5). This relation then provides the connection

between statistical mechanics and thermodynamics. The internal energy of

a system can be obtained from the free energy via

U ¼ �T2@ðF=TÞ=@T : ð2:6Þ

By the use of a partial derivative we imply here that F will depend upon

other variables as well, e.g. the magnetic field H in the above example, which

are held constant in Eqn. (2.6). This also means that if the internal energy of

a system can be measured, the free energy can be extracted by appropriate

integration, assuming, of course, that the free energy is known at some

reference temperature. We shall see that this fact is important for simulations

which do not yield the free energy directly but produce instead values for the

internal energy. Free energy differences may then be estimated by integra-

tion, i.e. from �ðF=TÞ ¼ Ð
dð1=TÞU:

Using Eqn. (2.6) one can easily determine the temperature dependence

of the internal energy for the non-interacting Ising model, and this is also

shown in Fig. 2.1. Another important quantity, the entropy, measures the

amount of disorder in the system. The entropy is defined in statistical

mechanics by

S ¼ �kB lnP; ð2:7Þ

where P is the probability of occurrence of a state. The entropy can be

determined from the free energy from

S ¼ �ð@F=@TÞV ;N : ð2:8Þ
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2.1.1.3 Thermodynamic potentials and corresponding ensembles

The internal energy is expressed as a function of the extensive variables, S, V,

N, etc. There are situations when it is appropriate to replace some of these

variables by their conjugate intensive variables, and for this purpose addi-

tional thermodynamic potentials can be defined by suitable Legendre trans-

forms of the internal energy; in terms of liquid–gas variables such relations

are given by:

F ¼ U � TS; ð2:9aÞ
H ¼ U þ pV ; ð2:9bÞ
G ¼ U � TSþ pV ; ð2:9cÞ

where F is the Helmholtz free energy, H is the enthalpy, and G is the Gibbs

free energy. Similar expressions can be derived using other thermodynamic

variables, e.g. magnetic variables. The free energy is important since it is

a minimum in equilibrium when T and V are held constant, while G is a

minimum when T and p are held fixed. Moreover, the difference in free

energy between any two states does not depend on the path between the

states. Thus, in Fig. 2.2 we consider two points in the p�T plane. Two

different paths which connect points 1 and 2 are shown; the difference in

free energy between these two points is identical for both paths, i.e.

F2 � F1 ¼
ð

path I

dF ¼
ð

path II

dF: ð2:10Þ

The multidimensional space in which each point specifies the complete

microstate (specified by the degrees of freedom of all the particles) of a

system is termed ‘phase space’. Averages over phase space may be constructed

by considering a large number of identical systems which are held at the same

fixed conditions. These are called ‘ensembles’. Different ensembles are rele-

vant for different constraints. If the temperature is held fixed, the set of

systems is said to belong to the ‘canonical ensemble’ and there will be some

distribution of energies among the different systems. If instead the energy is

fixed, the ensemble is termed the ‘microcanonical’ ensemble. In the first two

10 Some necessary background

p

2

1

T

I

II

Fig. 2.2 Schematic

view of different paths

between two different

points in thermo-

dynamic p�T space.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-76848-1 - A Guide to Monte Carlo Simulations in Statistical Physics, Third Edition
David P. Landau and Kurt Binder
Excerpt
More information

http://www.cambridge.org/9780521768481
http://www.cambridge.org
http://www.cambridge.org

