Bioscience Ethics

Bioscience ethics facilitates free and accurate information transfer from applied science to applied bioethics. Its major elements are: increased understanding of biological systems, responsible use of technology, and curtailment of ethnocentric debates more in tune with new scientific insights. Coined by Irina Pollard in 1994, bioscience ethics has become an internationally recognized discipline, interfacing science and bioethics within professional perspectives such as medical, legal, bioengineering and economics. The fundamental feature of this book is its breadth, which is important because bioscience ethics interweaves many diverse subjects in the process of gathering specialist scientific knowledge for bioethical review. It contains chapters which embrace topics affecting human reproduction, end-of-life care and euthanasia, others which challenge human-dominated ecosystems, and review population growth, economic activity and warfare. A background section describes the evolution of ethical consciousness, explores the future and proposes that the reworking of ethical boundaries can enhance mature decision-making in harmony with changing technology.

IRINA POLLARD is an Associate Professor in the Department of Biological Sciences at Macquarie University in Sydney. In the 1990s, she initiated and developed new ways of communicating science described as bioscience ethics. Her research activities have generated a deep concern for social justice and, as a result, she is active in community education and serves on local and international Institutional Ethics Committees. Through UN-affiliated organizations, she is occupied with international bioscience-bioethics education projects via active membership of UNESCO’s School of Ethics and, more recently, as the Chair of the Australian Unit of the International Network of the UNESCO Chair in Bioethics. In 2007 she was elected to the Board of Directors of the International Association of Bioethics. She also founded the Bioscience-Bioethics Friendship Co-operative (BBFC) web portal at http://www.bioscience-bioethics.org/ which provides free admittance to educational material in the areas of stress physiology, reproduction, toxicology/teratology and environmental ethics, and access to other useful links for those interested in bioscience and bioethics.
Bioscience Ethics

Irina Pollard
Macquarie University, New South Wales, Australia
Contents

Preface page xi
Acknowledgements xiii

1 Human origins, natural selection and the evolution of ethics 1
 Modern science, ethics and evolving bioscience ethics 2
 The hunter-gatherer Homo sapiens 5
 Ethics – our evolutionary heritage 11
 Neuroethics – unravelling the neural basis of moral judgement 16
 Evolving bioscience-bioethics 18
 Principles of bioscience ethics for discussion 22

2 Sex determination, brain sex and sexual behaviour 24
 Sex determination 25
 Errors of sexual differentiation 30
 Brain sex determination 33
 The socialization of human sexuality 35
 Sexual orientation 36
 Transgender and gender recognition 38
 Principles of bioscience ethics for discussion 43

3 Inappropriate lifestyle and congenital disability in children: basic principles of growth, toxicology, teratogenesis and mutagenesis 44
 Patterns of human growth 45
 The embryonic/fetal periods and embryo staging 47
 The placenta as the maternal–fetal interface 50
 Abnormal prenatal growth patterns, fetal programming and long-term health consequences 51
Contents

Toxicology: basic principles 55
Teratogenesis, mutagenesis and carcinogenesis 58
Principles of bioscience ethics for discussion 60

4 Substance abuse and parenthood: biological mechanisms – bioethical responsibilities 61

Introductory background 61

Behavioural variables – biological consequences 64

The preconceptional period: male-mediated effects 65
Specifics 65
The preconceptional period: female-mediated effects 67
Drug-induced infertility 68
The prenatal and neonatal periods 69
Nicotine 70
Sudden infant death syndrome (SIDS) 71
Passive smoking 72
Attention-deficit hyperactivity disorder (ADHD) 72
Ethanol (alcohol) 73
Fetal alcohol syndrome (FAS) 74
Cocaine 76
Marijuana 77
Narcotics 78
Caffeine 79

Behavioural variables – bioethical challenges 79

Socioeconomic factors 80
An ecologically based model of preventative care – government and citizens in equal partnership 84
The emotional brain and the biology of addiction 85
Principles of bioscience ethics for discussion 88

5 Fertility awareness: the ovulatory method of birth control, ageing gametes and congenital malformation in children 90

The laws of inheritance 91
Human fecundity 93
Female libido: procreational versus recreational sex 94
Principles of reproductive ageing 95
Ageing gametes and ovulatory method of birth control 98
The gametopathy hypothesis and congenital anomalies 101
Principles of bioscience ethics for discussion 105

6 Understanding child abuse and its biological consequences 106

Adaptation of the newborn to extrauterine life 107
Bonding and social relations 109
Unwanted birth and crime 111
Post-traumatic stress disorder or the physical signature of unresolved trauma 114
The biology of behaviour and cognition 117
Stress and psychosocial short stature 119
Future prospects 120
Principles of bioscience ethics for discussion 122

7 The state of wellbeing: basic principles, coping strategies and individual mastery 124
The link between population density and reproduction 126
Stress – the General Adaptation Syndrome (GAS), allostasis and disease 127
Adaptive strategies 131
Principles of bioscience ethics for discussion 134

8 The state of wellbeing: on the end-of-life care and euthanasia 135
Life’s balance sheet 136
End-of-life care, advanced directives and ‘do not resuscitate’ orders 137
Euthanasia, an evolving concept 140
Principles of bioscience ethics for discussion 143

9 Current reproductive technologies: achievements and desired goals 145
Lifestyle, fertility and the Assisted Reproductive Technologies (ARTs) 145
Fertility control – the evolutionary perspective 146
Infertility – the price of excess fecundity 148
Assisted reproduction: social considerations 150
Assisted reproduction: technological considerations 152
Artificial insemination 156
In vitro fertilization and related technologies 158
Intracytoplasmic sperm injection and cytoplasmic transfer technologies 161
Maturing human eggs in the laboratory 162
Epigenetics, imprinting and assisted reproduction 163
Surrogacy 164
Assisted reproduction, genetic diversity and the biology of conservation 165
Inbreeding depression 166
The role of ART in conservation 166
Principles of bioscience ethics for discussion 170
Contents

10 The recombinant DNA technologies 171

Genetic engineering and related technologies – biological perspective 171

Gene therapy 173
Prenatal genetic screening and diagnosis 179
Preimplantation genetic screening and diagnosis 181
Neonatal genetic screening and diagnosis 182
Presymptomatic screening for individuals and populations 182
The use of genetic technology for social purposes 183

The Human Genome and the Human Genome Diversity Projects 184

Access to the ownership of genomes 188
Principles of bioscience ethics for discussion 190

11 Stem cells, nuclear transfer and cloning technology 192

What is a clone? 193
Reproductive cloning: basic principles 196
Embryonic stem cell (aka therapeutic or biomedical) cloning 197
Adult stem cell alternatives 200
Reproductive cloning: ethical considerations 200
Principles of bioscience ethics for discussion 203

12 Human-dominated ecosystems: re-evaluating environmental priorities 204

Population growth and economic activity – are we overstraining our limits? 204
Extinction and conservation of biodiversity 207
Genetic diversity and environmental adaptability 211
Human-driven climate change 212
Stress and adaptation 216
Living within Nature’s constraints 217

Understanding living cycles and anticipating environmental policies rather than relying on remedial measures 219
Fundamental symbiosis: the biogeochemical or nutrient cycle 220
Losing the food race 223
Deep design: the synthesis of Nature and culture 225
Principles of bioscience ethics for discussion 228

13 Human-dominated ecosystems: reclaiming the future for following generations 229

Self-destructive behaviour and overexploitation of the environment 229
The tragedy of the commons 229
Preface

The ethical dimension of science is significant because all of us will need to participate, as citizens, in making informed choices about its uses and abuses. Biological education, while consistent with new knowledge, ought also to be relevant to real-life experiences within sociocultural and ethical contexts. The indiscriminate use, abuse and misunderstanding of science’s valuable technological developments are, beyond doubt, a matter of ethical concern and collective responsibility. To adequately respond to the challenges that our technological-based predicaments have created, a deeper understanding of biological systems is essential. To this end, the new transdisciplinary field dubbed ‘bioscience ethics’ provides unique opportunities for advancing biological understanding within the scaffolding of ethics. Without free and accurate access to scientific, medical and technological expertise - factors which drive present-day social change - the search for a bioethics in tune with modern reality is severely disadvantaged. Bioscience ethics provides a source of information that bridges the gap between applied science and applied ethics. The concept does not displace bioethics; rather it aims to assist its growth. As the interface between scientific endeavour and its application into acceptable forms of bioethical consensus, bioscience ethics demands increased understanding of biological systems, the responsible use of technology and curtailment of ethnocentric debate in tune with scientific insight. The fundamental feature of this book is its breadth – by integrating ethics with the life sciences and by emphasizing that the human condition is the product of past and present circumstance, it highlights the ethics that emerging scientific insights may involve. Publications such as my introductory text, Life, Love and Children: A Practical Introduction to Bioscience Ethics and Bioethics (developed for open-access educational purposes), have generated growing interest in bioscience ethics by students and academics as well as the general public. This book responds to the growing interest by adaptively integrating traditional
reductionist insights within broader cross-disciplinary levels of bioethical significance. My hope is that, with deepened biological understanding, new standards of social conduct, more in cooperation and harmony with the environment and ourselves, will evolve.

Irina Pollard
Acknowledgements

Any enterprise of breadth rests heavily on the scholarship of others. Therefore, I would like to thank all authors from the extensive published literature whose material I have freely used but, owing to space constraints, only a selection is provided in the Further reading. Predominantly I owe a debt to my partner Roger Hiller who critically read all my drafts, insisted on clarity of expression, and who generously gave expert guidance throughout the book’s development. It’s been instructive to see how Roger’s well-judged assessments resulted in important content/textual modifications which so effectively highlighted the intended essence of my writing. I’m also considerably indebted to my son Morgan Pollard for engaging me in probing discussions, especially in the environmental sections. I also extend my thanks to numerous friends and colleagues who helped me focus my thoughts throughout the laborious writing process, and to the students who gave enthusiastically of themselves during their reading of the subject as taught at Macquarie University. I especially owe a debt to bioscience ethics students and staff who strongly supported my fledgling subject, initially taught as an introductory vacation unit, and insisted that bioscience ethics needs to be expanded and recognized in any science curriculum. I also want to acknowledge friends, of like mind, who in the course of various collaborative educational projects within UNESCO’s School of Ethics and elsewhere, provided valuable opportunities to stretch my interests in bioscience ethics. In this regard I particularly want to thank Darryl Macer for being an excellent friend and invaluable colleague. To all, I extend a warm thank you.

The original scientific illustrations are an integral part of the book’s text and for these I owe a special thanks to the scientific illustrator and artist Barbara Duckworth who, without fail, was able to create meaningful illustrations from my roughest sketches. I’m also very grateful to Ray Duell for skillfully generating eloquent electronic diagrams based on my amateur drafts and for
xiv Acknowledgments

his ongoing assistance in computing matters essential in the preparation of this volume. Ray’s IT expertise is astounding, as can be demonstrated by inspecting our web-based education portal, freely accessible at http://www.bioscience-bioethics.org/.

Finally, I want to acknowledge my two editors at Cambridge University Press - Alan Crowden and Dominic Lewis - for enthusiastically embracing bioscience ethics and assisting in its promotion. Thanks are also due to all at Cambridge University Press who helped to bring this book to fruition. For me the journey has been both challenging and enlightening.