### **Biosimulation**

This practical guide to biosimulation provides the hands-on experience needed to devise, design, and analyze simulations of biophysical processes for applications in biological and biomedical sciences. Through real-world case studies and worked examples, students will develop and apply basic operations through to advanced concepts, covering a wide range of biophysical topics, including chemical kinetics and thermodynamics, transport phenomena, and cellular electrophysiology. Each chapter is built around case studies in a given application area, with simulations of real biological systems developed to analyze and interpret data. Open-ended project-based exercises are provided at the end of each chapter, and with all data and computer codes available online (www.cambridge.org/biosim) students can quickly and easily run, manipulate, explore, and expand on the examples inside. This hands-on guide is ideal for use on senior undergraduate/graduate courses, and also as a self-study guide for anyone who needs to develop computational models of biological systems.

**Daniel A. Beard** is a Professor in the Biotechnology and Bioengineering Center and the Department of Physiology at the Medical College of Wisconsin. Research in his laboratory is focused on systems engineering approaches to understanding the operation of physiological systems in health and disease. A recent major effort in his group has been on theoretical and experimental characterization of the thermodynamics, kinetics, and electrophysiology of cardiac mitochondria. Additional research interests include nonequilibrium thermodynamics in biochemical networks, mass transport and microvascular exchange in physiological systems, and drug metabolism and physiologically based pharmacokinetics.

## CAMBRIDGE TEXTS IN BIOMEDICAL ENGINEERING

Series Editors

**W. Mark Saltzman**, Yale University **Shu Chien**, University of California, San Diego

Series Advisors

Jerry Collins, Alabama A & M University Robert Malkin, Duke University Kathy Ferrara, University of California, Davis Nicholas Peppas, University of Texas, Austin Roger Kamm, Massachusetts Institute of Technology Masaaki Sato, Tohoku University, Japan Christine Schmidt, University of Texas, Austin George Truskey, Duke University Douglas Lauffenburger, Massachusetts Institute of Technology

*Cambridge Texts in Biomedical Engineering* provide a forum for high-quality textbooks targeted at undergraduate and graduate courses in biomedical engineering. It covers a broad range of biomedical engineering topics from introductory texts to advanced topics, including biomechanics, physiology, biomedical instrumentation, imaging, signals and systems, cell engineering, and bioinformatics, as well as other relevant subjects, with a blending of theory and practice. While aiming primarily at biomedical engineering, the life sciences and medicine.

# **Biosimulation**

Simulation of Living Systems

Daniel A. Beard Medical College of Wisconsin



CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Mexico City

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521768238

© D. A. Beard 2012

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2012

Printed in the United Kingdom at the University Press, Cambridge

A catalog record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication data Beard, Daniel A., 1971– Biosimulation : simulation of living systems / Daniel A. Beard. p. cm. – (Cambridge texts in biomedical engineering) ISBN 978-0-521-76823-8 (hardback) 1. Biophysics – Computer simulation. 2. Biophysics – Simulation methods. 3. Biomedical engineering – Computer simulation. 4. Medical sciences – Case studies. I. Title. QH505.B35 2012 571.401'13 – dc23 2011046839

ISBN 978-0-521-76823-8 Hardback

Additional resources for this publication at www.cambridge.org/9780521768238

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

# Contents

|   | Preface p                                               |                                                               |                                                       |    |  |  |  |  |
|---|---------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------|----|--|--|--|--|
|   | Extracts                                                |                                                               |                                                       |    |  |  |  |  |
| 1 | Intr                                                    | Introduction to simulation of biological systems              |                                                       |    |  |  |  |  |
|   | 1.1                                                     | 1.1 Modeling approaches                                       |                                                       |    |  |  |  |  |
|   | 1.2                                                     | An int                                                        | troductory example: biochemistry of a home aquarium   | 2  |  |  |  |  |
|   |                                                         | 1.2.1                                                         | First model: a nonmechanistic analysis                | 3  |  |  |  |  |
|   |                                                         | 1.2.2                                                         | Nonmechanistic analysis with noise                    | 6  |  |  |  |  |
|   |                                                         | 1.2.3                                                         | Mechanistic modeling                                  | 11 |  |  |  |  |
|   | 1.3                                                     | Recap                                                         | itulation and lessons learned                         | 17 |  |  |  |  |
| 2 | Transport and reaction of solutes in biological systems |                                                               |                                                       |    |  |  |  |  |
|   | 2.1 Well-mixed systems: compartmental modeling          |                                                               |                                                       |    |  |  |  |  |
|   | 2.2                                                     | Passive flow of water, solutes, and electrical current across |                                                       |    |  |  |  |  |
|   |                                                         | membranes                                                     |                                                       |    |  |  |  |  |
|   |                                                         | 2.2.1                                                         | Basic equations                                       | 24 |  |  |  |  |
|   |                                                         | 2.2.2                                                         | Example: volume changes in isolated glomeruli         | 28 |  |  |  |  |
|   | 2.3                                                     | Simulating chemical reactions                                 |                                                       |    |  |  |  |  |
|   |                                                         | 2.3.1 Example: synthesis of ethanol from xylose               |                                                       | 35 |  |  |  |  |
|   | 2.4                                                     | Distributed transport modeling                                |                                                       |    |  |  |  |  |
|   |                                                         | 2.4.1                                                         | Flowing systems: the advection equation               | 46 |  |  |  |  |
|   |                                                         | 2.4.2                                                         | Reaction-diffusion systems                            | 53 |  |  |  |  |
|   |                                                         | 2.4.3                                                         | Advection-reaction-diffusion systems                  | 61 |  |  |  |  |
|   | 2.5                                                     | Recap                                                         | itulation and lessons learned                         | 62 |  |  |  |  |
| 3 | Phy                                                     | siolog                                                        | ically based pharmacokinetic modeling                 | 66 |  |  |  |  |
|   | 3.1                                                     | Introduction to lumped compartmental PBPK modeling            |                                                       |    |  |  |  |  |
|   |                                                         | 3.1.1 Basic equations                                         |                                                       | 67 |  |  |  |  |
|   |                                                         | 3.1.2                                                         | Comparison of distributed and lumped transport models | 70 |  |  |  |  |
|   |                                                         | 3.1.3                                                         | Quasi-steady model reduction                          | 73 |  |  |  |  |

| vi | Coi | ntents |                                                                  |     |
|----|-----|--------|------------------------------------------------------------------|-----|
|    |     |        |                                                                  |     |
|    |     |        | 3.1.4 Lumped versus distributed transport modeling: a final word | 76  |
|    |     | 3.2    | Overview of the mammalian circulatory system                     | 77  |
|    |     | 3.3    | Whole-body PBPK simulation                                       | 77  |
|    |     | 3.4    | Example: uptake and delivery of matrine in rat                   | 84  |
|    |     |        | 3.4.1 A PBPK model for rat                                       | 84  |
|    |     |        | 3.4.2 Model parameters                                           | 87  |
|    |     |        | 3.4.3 Flow-limited transport                                     | 89  |
|    |     |        | 3.4.4 Model validation and discrimination                        | 98  |
|    |     | 3.5    | Recapitulation and lessons learned                               | 101 |
|    | 4   | Car    | diovascular systems simulation                                   | 105 |
|    |     | 4.1    | The Frank-Starling mechanism of heart                            | 105 |
|    |     | 4.2    | An analysis of the physiological factors that control            |     |
|    |     |        | cardiac output                                                   | 110 |
|    |     |        | 4.2.1 Guyton's model of the systemic circulation                 | 110 |
|    |     |        | 4.2.2 What the model tells us about the relationship             |     |
|    |     |        | between flow and right atrial pressure                           | 114 |
|    |     |        | 4.2.3 How the simple Guyton model is commonly                    |     |
|    |     |        | misinterpreted                                                   | 120 |
|    |     | 4.3    | Pulsatile mechanics of the circulatory system                    | 122 |
|    |     |        | 4.3.1 Time-varying elastance models of the heart                 | 124 |
|    |     |        | 4.3.2 Simulation of the aortic pressure waveform                 | 127 |
|    |     | 4.4    | Dynamic changes in blood pressures and flows                     | 133 |
|    |     |        | 4.4.1 Baroreceptor control of systemic pressure                  | 138 |
|    |     | 4.5    | Mechanisms of hypertension                                       | 141 |
|    |     | 4.6    | Recapitulation and lessons learned                               | 142 |
|    | 5   | Che    | emical reaction systems: thermodynamics and chemical             |     |
|    |     | equ    | ilibrium                                                         | 145 |
|    |     | 5.1    | Temperature, pressure, and entropy                               | 145 |
|    |     |        | 5.1.1 Microstates and macrostates                                | 145 |
|    |     |        | 5.1.2 Example: a simple two-state system                         | 146 |
|    |     |        | 5.1.3 Relationship between temperature and entropy               | 148 |
|    |     |        | 5.1.4 Relationship between pressure and entropy                  | 149 |
|    |     | 5.2    | Free energy under constant-temperature and constant-volume       |     |
|    |     |        | conditions                                                       | 150 |
|    |     | 5.3    | Free energy under constant-temperature and constant-pressure     |     |
|    |     |        | conditions                                                       | 153 |
|    |     | 5.4    | Thermodynamic ensembles, partition functions, and driving forces | 153 |
|    |     | 5.5    | Chemical reactions, stoichiometry, and equilibrium constants     | 154 |
|    |     |        |                                                                  |     |

| vii | Contents |                                                                                                                                         |                   |
|-----|----------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|     |          |                                                                                                                                         |                   |
|     | 5.6      | Acids, bases, and buffers                                                                                                               | 159               |
|     | 5.7      | Analysis of biochemical reactions                                                                                                       | 162               |
|     |          | 5.7.1 Example: equilibrium of a biochemical reaction                                                                                    | 162               |
|     |          | 5.7.2 Example: standard enthalpy of a biochemical reaction                                                                              | 172               |
|     | 5.8      | Recapitulation and lessons learned                                                                                                      | 174               |
|     | 6 Che    | emical reaction systems: kinetics                                                                                                       | 178               |
|     | 6.1      | Basic principles of kinetics                                                                                                            | 178               |
|     |          | 6.1.1 Mass-action kinetics                                                                                                              | 178               |
|     |          | 6.1.2 Thermodynamic constraints on reaction kinetics                                                                                    | 180               |
|     |          | 6.1.3 Transition state theory                                                                                                           | 181               |
|     |          | 6.1.4 Example: temperature dependence of a chemical                                                                                     |                   |
|     |          | reaction                                                                                                                                | 185               |
|     | 6.2      | Enzymes                                                                                                                                 | 185               |
|     |          | 6.2.1 The Michaelis–Menten rate law                                                                                                     | 186               |
|     |          | 6.2.2 Case study: mechanism and kinetics of fumarase                                                                                    | 189               |
|     |          | 6.2.3 Systematic approaches to enzyme kinetics                                                                                          | 197               |
|     | 6.3      | Biochemical reaction systems                                                                                                            | 199               |
|     |          | 6.3.1 Example: feedback control of oxidative phosphorylation                                                                            | 199               |
|     | 6.4      | Recapitulation and lessons learned                                                                                                      | 202               |
|     | 7 Che    | emical reaction systems: large-scale systems simulation                                                                                 | 205               |
|     | 7.1      | Biochemical systems in living cells                                                                                                     | 206               |
|     | 7.2      | General approach to metabolic kinetics                                                                                                  | 206               |
|     |          | 7.2.1 Enzyme rate laws and biochemical networks                                                                                         | 207               |
|     |          | 7.2.2 Simulating pH kinetics                                                                                                            | 211               |
|     |          | 7.2.3 Example: glycogenolysis in skeletal muscle                                                                                        | 213               |
|     | 7.3      | Reverse engineering and model discovery                                                                                                 | 219               |
|     |          | 7.3.1 Example: gene interaction in <i>Dictyostelium</i>                                                                                 | 221               |
|     | 7.4      | Recapitulation and lessons learned                                                                                                      | 227               |
|     | 8 Cel    | lular electrophysiology                                                                                                                 | 230               |
|     | 8.1      | Basic concepts of cell electrophysiology                                                                                                | 230               |
|     |          | 8.1.1 Thermodynamics of ion fluxes                                                                                                      | 231               |
|     | 8.2      | The Hodgkin–Huxley model of the squid giant axon                                                                                        | 233               |
|     |          | 8.2.1 The potassium conductance                                                                                                         | 235               |
|     |          | 8.2.2 The sodium conductance                                                                                                            | 239               |
|     |          |                                                                                                                                         |                   |
|     |          | 8.2.3 Summary of model equations                                                                                                        | 245               |
|     |          | <ul><li>8.2.3 Summary of model equations</li><li>8.2.4 Refractory period</li></ul>                                                      | 245<br>249        |
|     |          | <ul><li>8.2.3 Summary of model equations</li><li>8.2.4 Refractory period</li><li>8.2.5 The legacy of the Hodgkin–Huxley model</li></ul> | 245<br>249<br>249 |

| ١ | viii                                                   | Contents |                                                    |                                                                |     |
|---|--------------------------------------------------------|----------|----------------------------------------------------|----------------------------------------------------------------|-----|
|   |                                                        |          |                                                    |                                                                |     |
|   |                                                        |          | 8.3                                                | Models of ion channel gating                                   | 251 |
|   |                                                        |          | 8.4                                                | Stochastic simulations                                         | 255 |
|   |                                                        |          | 8.5                                                | Recapitulation and lessons learned                             | 258 |
|   | 9 Appendices: mathematical and computational technique |          | endices: mathematical and computational techniques | 262                                                            |     |
|   |                                                        |          | 9.1                                                | Finite-difference approximations for continuous processes      | 262 |
|   |                                                        |          | 9.2                                                | Least-squares solution to $A\mathbf{x} = \mathbf{b}$           | 264 |
|   |                                                        |          | 9.3                                                | Using computers to integrate ordinary differential equations   | 265 |
|   |                                                        |          | 9.4                                                | Optimization for parameter estimation                          | 268 |
|   |                                                        |          | 9.5                                                | The method of lines for the one-dimensional advection equation | 271 |
|   |                                                        |          | 9.6                                                | Finite-difference approximation for simulating a FRAP          |     |
|   |                                                        |          |                                                    | experiment                                                     | 274 |
|   |                                                        |          |                                                    | 9.6.1 Simulating two-dimensional diffusion                     | 274 |
|   |                                                        |          |                                                    | 9.6.2 Simulating diffusion and reaction                        | 277 |
|   |                                                        |          | 9.7                                                | Circuits of resistors, capacitors, and inductors               | 281 |
|   |                                                        |          |                                                    | 9.7.1 Circuit components                                       | 281 |
|   |                                                        |          |                                                    | 9.7.2 Circuit analysis and simulation                          | 283 |
|   |                                                        |          | 9.8                                                | Rate laws and parameter values for glycogenolysis model        | 287 |
|   |                                                        |          | Refe                                               | rences                                                         | 299 |
|   |                                                        |          | Inde                                               | x                                                              | 304 |

## Preface

Research, development, and design in bioengineering, biomedical engineering, biophysics, physiology, and related fields rely increasingly on mathematical modeling and computational simulation of biological systems. Simulation is required to analyze data, design experiments, develop new technology, and simply to attempt to understand the complexity inherent in biological systems.

This book focuses on practical implementation of techniques to study real biological systems. Indeed, whenever possible, specific applications are developed, starting with a study of the basic operation of the underlying biological, biochemical, or physiological system and, critically, the available data. It is hoped that this data-rich exposition will yield a practical text for engineering students and other readers interested primarily in earthy real-world applications such as analyzing data, estimating parameter values, etc. Thus for the examples developed here, important details of underlying biological systems are described along with a complete step-by-step development of model assumptions, the resulting equations, and (when necessary) computer code. As a result, readers have the opportunity, by working through the examples, to become truly proficient in *biosimulation*.

In this spirit of soup-to-nuts practicality, the book is organized around biological and engineering application areas rather than based on mathematical and computational techniques. Where specific mathematical or computational techniques can be conveniently and effective separated from the exposition, they have been and can be found in the Appendices. Computer codes implemented in MATLAB<sup>(R)</sup> (The MathWorks, Natick, MA, USA) for all of the examples in the text can be found online at the URL http://www.cambridge.org/biosim.

I am particularly grateful to a number of individuals who provided critical feedback on the text, including Edmund Crampin, Peter Hunter, Muriel Mescam, Gary Raymond, Nic Smith, Matt Thompson, Kalyan Vinnakota, and Fan Wu. Andy Salmon graciously provided the data from his experiments presented in Section 2.2.2. Tom O'Hara provided some guidance on the model analyzed in Section 8.3. Jim Bassingthwaighte's guidance and advice over many years, as well as specific criticism of the text, are gratefully acknowledged.

Finally, I want to give special thanks to my colleagues Henry and Nicholas Beard for helping with the experiments described in Chapter 1.

## Extracts

"All is in flux."

Heraclitus (540-480 BCE)

"This application of mathematics to natural phenomena is the aim of all science, because the expression of the laws of phenomena should always be mathematical."

Claude Bernard, Introduction a l'étude de la médecine expérimentale 1865 Flammarion, Paris (English translation from Noble, Exp. Physiol. 93: 16–26, 2008)

"Of physiology from top to toe I sing."

Walt Whitman, Leaves of Grass, 1883

"The human body is a chemical and physical problem, and these sciences must advance before we can conquer disease."

Henry A. Rowland, The Highest Aims of the Physicist, Address to the American Physical Society, 1899, published in Science 10: 825–833, 1899

"We are seeing the cells of plants and animals more and more clearly as chemical factories, where the various products are manufactured in separate workshops. The enzymes act as the overseers. Our acquaintance with these most important agents of living things is constantly increasing. Even though we may still be a long way from our goal, we are approaching it step by step. Everything is justifying our hopes. We must never, therefore, let ourselves fall into the way of thinking 'ignorabimus' ('We shall never know'), but must have every confidence that the day will dawn when even those processes of life which are still a puzzle today will cease to be inaccessible to us natural scientists." *Eduard Buchner, Nobel Lecture, 1907* 

"To a physician or physiologist at the present day a man's body is a machine, or rather a factory full of machines, all working harmoniously together for the good of the organism."

> Ernest N. Starling, The Linacre Lecture on the Law of the Heart, 1915, published by Longmans, Green and Co., London, 1918

"The mathematical box is a beautiful way of wrapping up a problem, but it will not hold the phenomena unless they have been caught in a logical box to begin with."

John R. Platt, Strong inference. Science, 146: 347-353, 1964

xii Extracts "People who wish to analyze nature without using mathematics must settle for a reduced understanding."

#### Richard Feynman

"[This book] is aimed at 'non-believers', that is to say the 90% or so of biochemistry students, and indeed of practicing biochemists, who place enzyme kinetics in the same category as Latin and cold showers, character-building perhaps, but otherwise to be forgotten as quickly as possible."

Paul C. Engel, Enzyme Kinetics: The Steady-State Approach 1977, Chapman & Hall, London

"Why make models? To think (and calculate) logically about what components and interactions are important in a complex system."

James E. Bailey, Mathematical modeling and analysis in biochemical engineering: past accomplishments and future opportunities. Biotechnol. Prog., 14: p. 8–20, 1998

"Without data, there is nothing to model; and without models, there is no source of deep predictive understanding."

James B. Bassingthwaighte, The Physiome Project: The macroethics of engineering toward health. The Bridge, 32: 24–29, 2002

"Over the last half century, we have proceeded by breaking living systems down into their smallest components, the individual genes and molecules. Humpty Dumpty has been smashed into billions of fragments... Can we put Humpty Dumpty back together again?"

Denis Noble, The Music of Life: Biology beyond the Genome. 2006, Oxford, New York