
1 Introduction to simulation of
biological systems

Overview

This chapter is built around analyzing a real data set obtained from a real biological
system to illustrate several complementary approaches to simulation and analysis.
The particular system studied (a home aquarium) is a well-mixed chemical reactor.
Or, more accurately, the system studied is treated as a well-mixed chemical reactor,
a basic modeling paradigm that will appear again and again in this book.

Here, we look at this single physical system from several different perspectives
(that is, under different sets of underlying modeling assumptions) with the aim
of motivating the reader to undertake the study of the rest of this book. The
aim is not to overwhelm the reader with mathematical details that can be found
in later chapters. Therefore let us clearly state at the outset: it is not expected
or required that the reader follow every detail of the examples illustrated here.
Instead, we invite the reader to focus on the basic assumptions underlying the
methods applied, and to compare and contrast the results that are obtained based
on these different approaches. Proceeding this way, it is hoped that the reader may
gain an appreciation of the breath of the field. Furthermore, it is hoped that this
appreciation will continue to grow with a study of the rest of this book and beyond.

1.1 Modeling approaches

The number of different approaches to simulating biosystems behavior is perhaps
greater than the number of biological systems. The number is at least large enough
that a finite and complete list cannot be constructed. Simulation methods may
be classified according to the physical systems simulated (for example, cellular
metabolism, whole-body drug distribution, or ecological network dynamics), the
sets of assumptions used to build a simulation (for example, rapid mixing ver-
sus spatial inhomogeneity in chemical reaction systems), or the mathematical/
computational formulation of the simulation (for example, systems of ordi-
nary differential equations versus statistical inference networks for describing
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2 Introduction to simulation of biological systems

regulation of gene transcription). A glance at the table of contents reveals that
most of this book is organized by biological system or application area. (Modeling
assumptions and relevant computational techniques are introduced as necessary.)

These biological systems can (and will!) be studied by applying a variety of
sets of assumptions and associated computational methods. Doing this, we will
see that the methodology applied to a given system depends strictly on what one
thinks one knows about the system in advance, and what one wishes to discover
through computational analysis. In the following introductory example we will see
that what we can learn (for example, what variables and what parameters we can
estimate) depends on the prior knowledge built into a model, including (but not
limited to) what data are available for a given system.

1.2 An introductory example: biochemistry of a home aquarium

As our first exemplar modeling study, let us analyze the buildup and reaction of
waste materials in a home aquarium, a system that may be familiar to some readers.
Ammonia (NH3), which is toxic to fish, is excreted from fish as a waste product
and produced through decomposition of organic matter. In a well-functioning
aquarium, nitrifying bacteria in the aquarium filter oxidize ammonia to nitrite
(NO−

2 ) and oxidize the nitrite to nitrate (NO−
3 ). Of these three nitrogen-containing

compounds, nitrate is by far the least toxic to fish.
When one sets up a new aquarium, populations of nitrifying bacteria are yet to

be established, and concentrations of toxic compounds can temporarily build up.
Figure 1.1 plots data collected by the author from his own aquarium following the
addition of fish into a previously uninhabited new tank. Here we see that ammonia
concentration tends to build up over the first week or more. Once significant
populations of bacteria that convert NH3 to NO−

2 appear, the ammonia declines
while the nitrite level increases. Nitrite concentration eventually declines as nitrate
begins to appear.1

We wish to understand how these three concentrations are related kinetically. To
simplify the notation, we introduce the definitions x1 = [ammonia], x2 = [nitrite],
x3 = [nitrate] for the concentration variables. As already described, the expected
sequence of reaction in this system is x1→ x2 → x3. In fact, that sequence is
apparent from the data illustrated in the figure. Ammonia (x1) peaks around day
10, followed by nitrite (x2) around day 13. Nitrate concentration (x3) really picks
up following the peak in nitrite, and continues to steadily increase.

1 Ammonia, nitrite, and nitrate exist in aqueous solution in a number of rapidly interconverting forms. For example, at
low pH NH3 is largely protonated to form the ammonium ion NH+

4 . Here, the terms ammonia, nitrite, and nitrate are
understood to include all such rapidly converting species of these reactants.
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3 1.2 An introductory example: biochemistry of a home aquarium
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Figure 1.1

A home aquarium. The plot in panel (b) shows ammonia, nitrite, and nitrate concentration versus
time in a home aquarium. Concentrations are given in units of mg of nitrogen per liter (mg l−1).

Yet in addition to the reaction sequence, is it possible to obtain additional
quantitative information from these data? To do so, let us construct a series of
simple models and see what we can find.

1.2.1 First model: a nonmechanistic analysis

In the first model we would like to introduce the minimum number of assumptions
that allow us to explain the observed data. The idea is to construct a general set of
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4 Introduction to simulation of biological systems

governing differential equations for x1, x2, and x3 based only on the assumption of
mass conservation. Conservation laws are a universal tool for developing models
of many systems, including practically all of the examples studied in this book.
Here we assume that the volume of the system, V , remains constant. So the rate
of change of mass of a substance, d(cV )

dt
, is equal to V dc

dt
. In this case, the general

differential equation for concentration of a reactant is

V
dc

dt
=

⎛
⎜⎝ rate of production or

input measured in units
of mass per unit time

⎞
⎟⎠ −

⎛
⎜⎝ rate of loss

measured in units of
mass per unit time

⎞
⎟⎠ (1.1)

or

dc

dt
=

⎛
⎜⎜⎜⎝

rate of production or
input measured in units
of mass per unit time

per unit volume

⎞
⎟⎟⎟⎠ −

⎛
⎜⎜⎜⎝

rate of loss
measured in units of
mass per unit time

per unit volume

⎞
⎟⎟⎟⎠ . (1.2)

Applying this general form to the variables x1, x2, and x3 gives

dx1

dt
= k(t) − r12(t)

dx2

dt
= r12(t) − r23(t)

dx3

dt
= r23(t), (1.3)

where k(t) is the rate of ammonia (x1) production, and r12(t) and r23(t) are the rates
of conversion from ammonia to nitrite and from nitrite to nitrate, respectively. The
first equation states that the rate of change of x1 is equal to the rate of production
minus the rate of degradation. Similar statements of mass conservation follow for
dx2/dt and dx3/dt . Since no processes degrading nitrate are considered, there
is no degradation term in the dx3/dt equation. Because k(t), r12(t), and r23(t) are
(so far) assumed to be arbitrary functions, we have (so far) not introduced any
assumptions about the rules governing the behavior of these functions. The names
and definitions of the model variables are listed in the table below.

Variable Units Description

x1 mg l−1 concentration of ammonia
x2 mg l−1 concentration of nitrite
x3 mg l−1 concentration of nitrate
k mg l−1 day−1 rate of ammonia production
r 12 mg l−1 day−1 rate of nitrite production from ammonia
r 23 mg l−1 day−1 rate of nitrate production from nitrite
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5 1.2 An introductory example: biochemistry of a home aquarium

We call this model “nonmechanistic” because it does not invoke any biochem-
ical/biophysical mechanisms to describe the rates of conversion r12(t) and r23(t),
or the rate of production k(t). Instead these rates are all allowed to be arbitrary
functions.

So what can we do with this simple general model? One useful thing we can
do is analyze the data using the model to estimate r12(t), r23(t), and k and test
the model assumptions. From Eq. (1.3), we have r23(t) = dx3/dt , which can be
numerically approximated using a finite difference approximation

r̂23(t) ≈ x3(t + �t) − x3(t − �t)

2�t
. (1.4)

Here �t is the discrete time step over which the data in Figure 1.1 are sampled.
(I took one measurement per day, so �t = 1 day.) Equation (1.4) is the “central-
difference” approximation for the derivative of x3 with respect to time.2 Here we
use the notation r̂23 to denote the approximation (from the data) of r23. Next, given
our approximation of r23(t), we can approximate r12(t):

r̂12(t) = dx2

dt
+ r23(t) ≈ x2(t + �t) − x2(t − �t)

2�t
+ r̂23(t). (1.5)

Similarly, we can approximate k as a function of time

k̂(t) = dx1

dt
+ r12(t) ≈ x1(t + �t) − x1(t − �t)

2�t
+ r̂12(t). (1.6)

Values of k̂(t), r̂12(t), and r̂23(t) computed from the data in Figure 1.1 are plotted
in Figure 1.2.3 From these estimated rates we learn a number of things about
this system not immediately apparent from a simple inspection of the raw data.
First, we can see that the rate of ammonia production (k̂(t)) is estimated to
be approximately constant. Moreover, this analysis provides an estimate of the
constant k, approximately 0.4 to 0.5 mg l−1 day−1. This observation is perhaps
not unexpected, because the number and size of the fish remained approximately
constant over the course of the experiment, as did the amount of food introduced
per day. Therefore we might have expected the rate of ammonia production to be
nearly constant. Second, the analysis reveals that nitrite production (r̂12(t)) peaks
near day 13 while nitrate production peaks shortly after, around day 14. Towards
the end of the experiment, all of the reaction rates converge to equal approximately
0.5 mg l−1 day−1. Finally, we note that the estimated rates k̂(t), r̂12(t), and r̂23(t)
remain positive for the duration of the experiment. This observation makes sense,
because under normal conditions neither of the nitrification reactions is expected

2 Discrete approximations of derivatives are reviewed in Section 9.1 in the Appendices.
3 Computer codes (implemented in MATLAB) for this and all of the examples in this book can be found online at the URL

http://www.cambridge.org/biosim.
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Figure 1.2

Values of k̂(t ), r̂ 12(t ), and r̂ 23(t ) estimated from Eqs (1.4)–(1.6) and the data in Figure 1.1. These
rates are expressed in units of mass of nitrogen per unit volume per unit time: mg l−1 day−1.

to proceed in the reverse direction. Thus the result that r̂12(t) and r̂23(t) remain
positive provides a useful check of the physical realism of the model.

To summarize, analyzing the data of Figure 1.1 using the simple model of
Eq. (1.3), which invokes no more serious assumption than conservation of mass,
provides quantitative estimates of a number of variables that are not directly
measured.

1.2.2 Nonmechanistic analysis with noise

The preceding analysis was applied to a relatively noise-free data set, yielding
reasonable (and smooth) numerical estimates for the derivatives in Eqs (1.4)–
(1.6). However, differentiation has the unfortunate side effect of tending to magnify
noise. And since significant measurement noise is often associated with real-world
biological signals, analyses that require the estimation of derivatives of biological
data are often seriously confounded by noise.4

4 The aquarium experiment studied here cannot be regarded as a precisely controlled study. The original data set of
Figure 1.1 was collected by the author using a simple consumer kit, with which the concentrations are estimated by visual
comparison of the fluid in a test-tube assay with a color chart, possibly introducing bias. Although dilutions and replicates
were performed as appropriate, there is a human psychological component to interpreting these assays. Furthermore,
because the nitrate assay used is relatively insensitive over the reported concentration range, data were obtained by a
combination of interpolation, assuming a constant total nitrate production rate, and colorimetric assay. Given the potential
for bias, the reader is encouraged to conduct his or her own experiments in his or her own home laboratory!
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Figure 1.3

Analysis of noisy aquarium data. In panel (a) the data of Figure 1.1 are reproduced with added
noise. The analysis of the previous section is reproduced in panel (b), with k̂(t ), r̂ 12(t ), and r̂ 23(t )
computed from Eqs (1.4)–(1.6) applied to the noisy data from panel (a).

To illustrate this problem, and to explore some ideas of how to deal with it, we
can add some noise to our aquarium data. Figure 1.3(a) shows the same data as
those of Figure 1.1, with a relatively small amount of noise added. We can see that
the basic trends in the data remain the same, but this data set is less smooth than
the previous one.

The values of k̂(t), r̂12(t), and r̂23(t), computed from Eqs (1.4)–(1.6) for these
data are plotted in Figure 1.3(b). Here we can see the consequence of differentiating
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8 Introduction to simulation of biological systems

the noisy signals from the upper panel: these estimated rates are terribly noisy, and
hardly resemble the estimates illustrated in Figure 1.2. This analysis tells us very
little about what we think happened in the experiment. With only a modest amount
of random noise added to the signal, we are no longer able to draw any conclusions
or confidently estimate any of the unmeasured variables in the system.

To analyze the noisy data effectively requires additional analysis. One place to
start is to reexamine the data to look for clues on how to improve our calculations.
Is there any trend in the data set of Figure 1.3 that we might be able to take
advantage of? After a careful look, the observer’s attention might be directed
to the fact that over the second half of the experiment the ammonia and nitrite
concentrations remain very small compared with nitrate, which continues to grow.
If x1 and x2 remain constant over some time regime (say in the limit t → ∞
or, more practically, for the last two weeks of the experiment), then in this time
window Eq. (1.3) reduces to

dx1

dt
= k(t) − r12(t) = 0

dx2

dt
= r12(t) − r23(t) = 0

dx3

dt
= r23(t). (1.7)

This system of equations tells us that dx3/dt = k(t) in this time window. Furthe-
rmore, observation of the raw data in Figure 1.3 tells us that the rate of growth
of nitrate (or dx3/dt) is approximately constant in this time window.

Therefore, before trying to estimate the rates k(t), r12(t), and r23(t), there is
justification for introducing the a priori assumption that k(t) becomes constant at
some point in the experiment. If we have other reasons (such as those discussed
above) to think that k(t) might be constant throughout the whole experiment, we
might hypothesize that this is the case. Doing so, this hypothesis can be formally
built into the analysis as an additional assumption, while being sure to remember
that this assumption is a hypothesis that remains to be tested against the data.

To test the hypothesis, we can sum the equations in Eq. (1.3) to obtain

d

dt
(x1 + x2 + x3) = k(t). (1.8)

If indeed k(t) is constant then the sum x1 + x2 + x3 should increase at at constant
rate throughout the experiment. In Figure 1.4 we plot this sum to test the hypothesis
and find that, indeed, x1 + x2 + x3 increases at an approximately constant rate. The
solid line in the figure represents a line of slope k̂ = 0.45 mg l−1 day−1, which
is the estimate of the constant rate of ammonia production obtained from this
analysis. With the hypothesis that k(t) is constant not disproved, and an estimate
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Plot of summed data x1 + x2 + x3. The solid line has slope 0.45 mg l−1 day−1, which provides an
estimate of the constant k.

of k in hand, we next continue by using this assumption to help estimate the other
rates.

With constant k, Eq. (1.3) provides three equations for the two unknowns r12(t)
and r23(t):

r12(t) = k − dx1

dt

r12(t) − r23(t) = dx2

dt

r23(t) = dx3

dt
(1.9)

with the equivalent numerical approximation

r̂12(t) = k̂ − x1(t + �t) − x1(t − �t)

2�t

r̂12(t) − r̂23(t) = x2(t + �t) − x2(t − �t)

2�t

r̂23(t) = x3(t + �t) − x3(t − �t)

2�t
. (1.10)

In general this is an ill-posed problem, and there is no solution (for r̂12(t) and
r̂23(t)) that satisfies all of the equations. Instead, we can seek a solution that in
some way approximately solves Eq. (1.10).
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10 Introduction to simulation of biological systems

Putting this linear system into matrix-vector form, we have

⎡
⎢⎣1 0

1 −1
0 1

⎤
⎥⎦

[
r̂12(t)
r̂23(t)

]
=

⎡
⎢⎢⎢⎢⎢⎣

k̂ − x1(t + �t) − x1(t − �t)

2�t
x2(t + �t) − x2(t − �t)

2�t
x3(t + �t) − x3(t − �t)

2�t

⎤
⎥⎥⎥⎥⎥⎦ . (1.11)

One approach to computing r̂12(t) and r̂23(t) is to find the solution that minimizes
the error between the left-hand and right-hand sides of this equation.

In fact, there exists a handy general solution to problems of this sort when the
error is formulated as the sum of squares of differences. These problems are called
least-squares problems in mathematics, and here we consider the specific problem
of minimizing the error in the overdetermined linear system

Ax = b,

where A is a matrix in which the number of rows (number of equations) outnumbers
the number of columns (number of unknowns). Note that the matrix in Eq. (1.11)
is a matrix of this type. The least-squares solution (the vector x that minimizes
‖Ax − b‖2) is found as the vector x that solves the well-posed problem

AT Ax = AT b.

(This least-squares analysis is reviewed in Section 9.2 of the Appendices.)
Applying this formula to Eq. (1.11), we obtain the following estimates for r̂12(t)

and r̂23(t).

r̂12(t) = 1

3

(
2k̂ − 2

x1(t + �t) − x1(t − �t)

2�t
+ x2(t + �t) − x2(t − �t)

2�t

+ x3(t + �t) − x3(t − �t)

2�t

)

r̂23(t) =
(

r̂12(t) + x3(t + �t) − x3(t − �t)

2�t
− x2(t + �t) − x2(t − �t)

2�t

)/
2.

(1.12)

(This solution is easy to verify and is the subject of Exercise 1.1.)
Holding k̂ constant and computing r̂12(t) and r̂23(t) at each time point from

Eq. (1.12), we obtain the estimates plotted in Figure 1.5. This result is a clear
improvement over Figure 1.3. Here we are able to capture the peak production
times near 13 days for nitrite and nitrate. However, the estimates are still noisier
than those obtained for the low-noise case illustrated in Figure 1.2. In addition, in
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