Self-contained and comprehensive, this definitive new edition of *Gravity and Strings* is a unique resource for graduate students and researchers in theoretical physics.

From basic differential geometry through to the construction and study of black-hole and black-brane solutions in quantum gravity – via all the intermediate stages – this book provides a complete overview of the intersection of gravity, supergravity, and superstrings.

Now fully revised, this second edition covers an extensive array of topics, including new material on non-linear electric-magnetic duality, the embedding-tensor formalism, matter-coupled supergravity, supersymmetric solutions, the geometries of scalar manifolds appearing in four- and five-dimensional supergravities, and much more. Covering reviews of important solutions and numerous solution-generating techniques, and accompanied by an exhaustive index and bibliography, this is an exceptional reference work.

Tomás Ortín is a Research Professor at the Institute for Theoretical Physics (IFT), a joint institute of the Autonomous University of Madrid and the Spanish National Research Council (UAM-CSIC). He has previously worked at the European Laboratory for Particle Physics (CERN), held postdoctoral positions at Stanford University and Queen Mary University of London, and has taught several graduate courses on advanced general relativity. His research interests include string theory, gravity, quantum gravity, and black-hole physics.
R. Penrose and W. Rindler Spinors and Space-Time Volume 1: Two-Spinor Calculus and Relativistic Fields
R. Penrose and W. Rindler Spinors and Space-Time Volume 2: Spinor and Twistor Methods in Space-Time Geometry
S. Pokorski Gauge Field Theories, 2nd edition
J. Polchinski String Theory Volume 1: An Introduction to the Bosonic String
J. Polchinski String Theory Volume 2: Superstring Theory and Beyond
J. C. Polkinghorne Models of High Energy Processes
V. N. Popov Functional Integrals and Collective Excitations
L. V. Prokhorov and S. V. Shabanov Hamiltonian Mechanics of Gauge Systems
A. Recknagel and V. Schiomerus Boundary Conformal Field Theory and the Worldsheet Approach to D-Branes
R. J. Rivers Path Integral Methods in Quantum Field Theory
R. G. Roberts The Structure of the Proton: Deep Inelastic Scattering
C. Rovelli Quantum Gravity
W. C. Saslaw Gravitational Physics of Stellar and Galactic Systems
R. N. Sen Causality, Measurement Theory and the Differentiable Structure of Space-Time
M. Shifman and A. Yung Supersymmetric Solitons
H. Stephani, D. Kramer, M. MacCallum, C. Herms and E. Herlt Exact Solutions of Einstein’s Field Equations, 2nd edition
J. Stewart Advanced General Relativity
J. C. Taylor Gauge Theories of Weak Interactions
T. Thielen Modern Canonical Quantum General Relativity
D. J. Toms The Schwinger Action Principle and Effective Action
A. Vilenkin and E. P. S. Shellard Cosmic Strings and Other Topological Defects
R. S. Ward and R. O. Wells, Jr Twistor Geometry and Field Theory
E. J. Weinberg Classical Solutions in Quantum Field Theory: Solitons and Instantons in High Energy Physics
J. R. Wilson and G. J. Mathews Relativistic Numerical Hydrodynamics

†Available in paperback
Gravity and Strings

TOMÁS ORTÍN

Spanish National Research Council
(CSIC)
To Marimar, Diego, and Tomás, the sweet strings that tie me to the real world
Contents

Preface to the second edition page xxi

Preface to the first edition xxv

Part I Introduction to gravity and supergravity 1

1 Differential geometry 3
 1.1 World tensors 3
 1.2 Affinely connected spacetimes 5
 1.3 Metric spaces 9
 1.3.1 Riemann–Cartan spacetime U_d 11
 1.3.2 Einstein–Weyl spacetime EW_d 14
 1.3.3 Riemann spacetime V_d 14
 1.4 Tangent space 16
 1.4.1 Weitzenböck spacetime A_d 20
 1.5 Killing vectors 22
 1.6 Duality operations 23
 1.7 Differential forms and integration 25
 1.8 Extrinsic geometry 27

2 Symmetries and Noether’s theorems 29
 2.1 Equations of motion 29
 2.2 Noether’s theorems 30
 2.3 Conserved charges 34
 2.4 The special-relativistic energy–momentum tensor 35
 2.4.1 Conservation of angular momentum 36
 2.4.2 Dilatations 40
 2.4.3 Rosenfeld’s energy–momentum tensor 42

ix
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>The Noether method</td>
<td>44</td>
</tr>
<tr>
<td>2.6</td>
<td>Generic symmetries of field theories</td>
<td>47</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Single vector field</td>
<td>48</td>
</tr>
<tr>
<td>2.6.2</td>
<td>The general case</td>
<td>53</td>
</tr>
<tr>
<td>2.6.3</td>
<td>Extension to higher dimensions and ranks</td>
<td>59</td>
</tr>
<tr>
<td>2.7</td>
<td>The embedding tensor formalism</td>
<td>62</td>
</tr>
<tr>
<td>3</td>
<td>A perturbative introduction to general relativity</td>
<td>70</td>
</tr>
<tr>
<td>3.1</td>
<td>Scalar SRFTs of gravity</td>
<td>71</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Scalar gravity coupled to matter</td>
<td>72</td>
</tr>
<tr>
<td>3.1.2</td>
<td>The action for a relativistic massive point-particle</td>
<td>73</td>
</tr>
<tr>
<td>3.1.3</td>
<td>The massive point-particle coupled to scalar gravity</td>
<td>75</td>
</tr>
<tr>
<td>3.1.4</td>
<td>The action for a massless point-particle</td>
<td>76</td>
</tr>
<tr>
<td>3.1.5</td>
<td>The massless point-particle coupled to scalar gravity</td>
<td>78</td>
</tr>
<tr>
<td>3.1.6</td>
<td>Self-coupled scalar gravity</td>
<td>78</td>
</tr>
<tr>
<td>3.1.7</td>
<td>The geometrical Einstein–Fokker theory</td>
<td>80</td>
</tr>
<tr>
<td>3.2</td>
<td>Gravity as a self-consistent massless spin-2 SRFT</td>
<td>82</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Gauge invariance, gauge identities, and charge conservation in the SRFT of a spin-1 particle</td>
<td>85</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Gauge invariance, gauge identities, and charge conservation in the SRFT of a spin-2 particle</td>
<td>88</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Coupling to matter</td>
<td>92</td>
</tr>
<tr>
<td>3.2.4</td>
<td>The consistency problem</td>
<td>101</td>
</tr>
<tr>
<td>3.2.5</td>
<td>The Noether method for gravity</td>
<td>103</td>
</tr>
<tr>
<td>3.2.6</td>
<td>Properties of the gravitational energy–momentum tensor $t^{(0)}_{\mu\sigma}^{GR}$</td>
<td>110</td>
</tr>
<tr>
<td>3.2.7</td>
<td>Deser’s argument</td>
<td>114</td>
</tr>
<tr>
<td>3.3</td>
<td>General relativity</td>
<td>121</td>
</tr>
<tr>
<td>3.4</td>
<td>The Fierz–Pauli theory in a curved background</td>
<td>128</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Linearized gravity</td>
<td>129</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Massless spin-2 particles in curved backgrounds</td>
<td>134</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Self-consistency</td>
<td>137</td>
</tr>
<tr>
<td>3.5</td>
<td>Final comments</td>
<td>137</td>
</tr>
<tr>
<td>4</td>
<td>Action principles for gravity</td>
<td>139</td>
</tr>
<tr>
<td>4.1</td>
<td>The Einstein–Hilbert action</td>
<td>140</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Equations of motion</td>
<td>142</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Gauge identity and Noether current</td>
<td>144</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Coupling to matter</td>
<td>145</td>
</tr>
<tr>
<td>4.2</td>
<td>The Einstein–Hilbert action in different conformal frames</td>
<td>146</td>
</tr>
<tr>
<td>4.3</td>
<td>The first-order (Palatini) formalism</td>
<td>148</td>
</tr>
<tr>
<td>4.3.1</td>
<td>The purely affine theory</td>
<td>151</td>
</tr>
<tr>
<td>4.4</td>
<td>The Cartan–Sciama–Kibble theory</td>
<td>152</td>
</tr>
<tr>
<td>4.4.1</td>
<td>The coupling of gravity to fermions</td>
<td>153</td>
</tr>
<tr>
<td>4.4.2</td>
<td>The coupling to torsion: the CSK theory</td>
<td>156</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Gauge identities and Noether currents</td>
<td>159</td>
</tr>
</tbody>
</table>
Contents

4.4.4 The first-order Vielbein formalism ... 161
4.5 Gravity as a gauge theory .. 166
4.6 Teleparallelism .. 170
 4.6.1 The linearized limit ... 172

5 Pure $N = 1, 2, d = 4$ supergravities .. 175
 5.1 Gauging $N = 1, d = 4$ superalgebras ... 176
 5.2 $N = 1, d = 4$ (Poincaré) supergravity ... 180
 5.2.1 Local supersymmetry algebra .. 184
 5.3 $N = 1, d = 4$ AdS supergravity ... 184
 5.3.1 Local supersymmetry algebra .. 186
 5.4 Extended supersymmetry algebras .. 186
 5.4.1 Central extensions ... 190
 5.5 $N = 2, d = 4$ (Poincaré) supergravity ... 191
 5.5.1 The local supersymmetry algebra .. 195
 5.6 $N = 2, d = 4$ “gauged” (AdS) supergravity 195
 5.6.1 The local supersymmetry algebra .. 197
 5.7 Proofs of some identities ... 197

6 Matter-coupled $N = 1, d = 4$ supergravity ... 199
 6.1 The matter supermultiplets ... 200
 6.2 The ungauged theory ... 202
 6.2.1 Examples ... 206
 6.3 The gauged theory ... 208
 6.3.1 The global symmetries ... 209
 6.3.2 Example: symmetries of the axion–dilaton model 212
 6.3.3 The gauging of the global symmetries 214
 6.3.4 Examples of gauged $N = 1, d = 4$ supergravities 218

7 Matter-coupled $N = 2, d = 4$ supergravity ... 220
 7.1 The matter supermultiplets ... 221
 7.2 The ungauged theory ... 222
 7.2.1 Examples ... 226
 7.3 The gauged theory ... 238
 7.3.1 The global symmetries ... 238
 7.3.2 Examples ... 241
 7.3.3 The gauging of the global symmetries 247
 7.3.4 Examples of gauged $N = 2, d = 4$ supergravities 252

8 A generic description of all the $N \geq 2, d = 4$ SUGERAs 256
 8.1 Generic supermultiplets ... 256
 8.2 The theories ... 259

9 Matter-coupled $N = 1, d = 5$ supergravity ... 263
 9.1 The matter supermultiplets ... 264
Contents

9.2 The ungauged theory 265
 9.2.1 Examples 267
9.3 The gauged theory 270
 9.3.1 The global symmetries 270
 9.3.2 Examples 271
 9.3.3 The gauging of the global symmetries 272
 9.3.4 Examples of gauged \(N = 1, d = 5 \) supergravities 274
10 Conserved charges in general relativity 275
 10.1 The traditional approach 276
 10.1.1 The Landau–Lifshitz pseudotensor 278
 10.1.2 The Abbott–Deser approach 280
 10.2 The Noether approach 283
 10.3 The positive-energy theorem 284

Part II Gravitating point-particles 289

11 The Schwarzschild black hole 291
 11.1 The Schwarzschild solution 292
 11.1.1 General properties 293
 11.2 Sources for the Schwarzschild solution 305
 11.3 Thermodynamics 307
 11.4 The Euclidean path-integral approach 312
 11.4.1 The Euclidean Schwarzschild solution 313
 11.4.2 The boundary terms 315
 11.5 Higher-dimensional Schwarzschild metrics 316
 11.5.1 Thermodynamics 317
12 The Reissner–Nordström black hole 318
 12.1 Coupling a scalar field to gravity and no-hair theorems 319
 12.2 The Einstein–Maxwell system 323
 12.2.1 Electric charge 326
 12.2.2 Massive electrodynamics 331
 12.3 The electric Reissner–Nordström solution 332
 12.4 Sources of the electric RN black hole 343
 12.5 Thermodynamics of RN black holes 345
 12.6 The Euclidean electric RN solution and its action 348
 12.7 Electric–magnetic duality 351
 12.7.1 Poincaré duality 354
 12.7.2 Magnetic charge: the Dirac monopole and the Dirac quantization condition 355
 12.7.3 The Wu–Yang monopole 361
 12.7.4 Dyons and the DSZ charge-quantization condition 362
 12.7.5 Duality in massive electrodynamics 365
Contents

12.8 Magnetic and dyonic RN black holes 366
12.9 Higher-dimensional RN solutions 369

13 The Taub–NUT solution 374
13.1 The Taub–NUT solution 375
13.2 The Euclidean Taub–NUT solution 378
13.2.1 Self-dual gravitational instantons 379
13.2.2 The BPST instanton 381
13.2.3 Instantons and monopoles 384
13.2.4 The BPST instanton and the KK monopole 388
13.2.5 Bianchi IX gravitational instantons 389
13.3 Charged Taub–NUT solutions and IWP solutions 390

14 Gravitational pp-waves 394
14.1 pp-waves 394
14.1.1 Hpp-waves 395
14.2 Four-dimensional pp-wave solutions 397
14.2.1 Higher-dimensional pp-waves 399
14.3 Sources: the AS shock wave 399

15 The Kaluza–Klein black hole 402
15.1 Classical and quantum mechanics on $\mathbb{R}^{1,3} \times S^1$ 403
15.2 KK dimensional reduction on a circle S^1 408
15.2.1 The Scherk–Schwarz formalism 411
15.2.2 Newton’s constant and masses 415
15.2.3 KK reduction of sources: the massless particle 418
15.2.4 Electric–magnetic duality and the KK action 422
15.2.5 Reduction of the Einstein–Maxwell action and $N = 1, d = 5$ SUGRAs 425
15.3 KK reduction and oxidation of solutions 431
15.3.1 ERN black holes 432
15.3.2 Dimensional reduction of the AS shock wave: the extreme electric KK black hole 435
15.3.3 Non-extreme Schwarzschild and RN black holes 438
15.3.4 Simple KK solution-generating techniques 441
15.4 Toroidal (Abelian) dimensional reduction 446
15.4.1 The 2-torus and the modular group 451
15.4.2 Masses, charges, and Newton’s constant 454
15.5 Generalized dimensional reduction 454
15.5.1 Example 1: a real scalar 456
15.5.2 Example 2: a complex scalar 459
15.5.3 Example 3: an $SL(2, \mathbb{R})/SO(2)$ σ-model 461
15.5.4 Example 4: Wilson lines and GDR 462
15.6 Orbifold compactification 463
16 Dilaton and dilaton/axion black holes 464
16.1 Dilaton black holes: the α-model 465
 16.1.1 The α-model solutions in four dimensions 469
16.2 Dilaton/axion black holes 474
 16.2.1 The general SWIP solution 479
 16.2.2 Supersymmetric SWIP solutions 481
 16.2.3 Duality properties of the SWIP solutions 482

17 Unbroken supersymmetry I: supersymmetric vacua 484
17.1 Vacuum and residual symmetries 485
 17.2 Supersymmetric vacua and residual (unbroken) supersymmetries 487
 17.2.1 Covariant Lie derivatives 490
 17.2.2 Calculation of supersymmetry algebras 493
 17.3 $N = 1, 2, d = 4$ vacuum supersymmetry algebras 494
 17.3.1 The Killing spinor integrability condition 497
 17.3.2 The vacua of $N = 1, d = 4$ Poincaré supergravity 498
 17.3.3 The vacua of $N = 1, d = 4$ AdS$_4$ supergravity 499
 17.3.4 The vacua of $N = 2, d = 4$ Poincaré supergravity 503
 17.3.5 The vacua of $N = 2, d = 4$ AdS supergravity 506
 17.4 The vacua of $d = 5, 6$ supergravities with eight supercharges 507
 17.4.1 $N = (1, 0), d = 6$ supergravity 507
 17.4.2 $N = 1, d = 5$ supergravity 508
 17.4.3 Relation to the $N = 2, d = 4$ vacua 510

18 Unbroken supersymmetry II: partially supersymmetric solutions 512
18.1 Partially supersymmetric solutions 513
 18.1.1 Partially unbroken supersymmetry, supersymmetry bounds, and
 the superalgebra 514
 18.1.2 Examples 519
18.2 Tod's program 522
 18.2.1 The Killing spinor identities 525
 18.3 All the supersymmetric solutions of ungauged $N = 1, d = 4$ supergravity 526
 18.3.1 Supersymmetric configurations 527
 18.3.2 Supersymmetric solutions 530
 18.4 All the supersymmetric solutions of ungauged $N = 2, d = 4$ supergravity 533
 18.4.1 The timelike case: supersymmetric configurations 533
 18.4.2 The timelike case: supersymmetric solutions 538
 18.4.3 The null case 540
 18.5 The timelike supersymmetric solutions of $N = 2, d = 4$ SEYM theories 541
 18.5.1 Supersymmetric configurations 541
 18.5.2 Supersymmetric solutions 543
 18.6 All the supersymmetric solutions of ungauged $N \geq 2, d = 4$ supergravity 544
 18.7 All the supersymmetric solutions of ungauged $N = 1, d = 5$ supergravity 549
 18.7.1 The timelike case: supersymmetric configurations 552
 18.7.2 The timelike case: supersymmetric solutions 555
Contents

18.7.3 The null case: supersymmetric configurations 555
18.7.4 The null case: supersymmetric solutions 557
18.7.5 Solutions with an additional isometry 558

19 Supersymmetric black holes from supergravity 562
19.1 Introduction 563
19.2 The supersymmetric black holes of ungauged $N = 2, d = 4$ supergravity 565
19.2.1 The general recipe 565
19.2.2 Single-black-hole solutions 568
19.2.3 Multi-black-hole solutions 571
19.2.4 Examples of single-SBHSs: stabilization equations 575
19.2.5 Two-center SBHS of the axion–dilaton model 581
19.3 The supersymmetric black holes of $N = 2, d = 4$ SEYM 582
19.3.1 The general recipe 582
19.3.2 Examples 584
19.4 The supersymmetric black holes of $N = 8, d = 4$ supergravity 588
19.4.1 The duality group of $N = 8, d = 4$ SUGRA and its invariants 589
19.4.2 The metric function 592
19.4.3 Single supersymmetric black-hole solutions 593
19.5 The supersymmetric black holes of $N = 1, d = 5$ supergravity 594
19.5.1 The general recipe 594
19.5.2 Single, static, black-hole solutions 596
19.5.3 Examples 599
19.5.4 Some stationary solutions of pure $N = 1, d = 5$ supergravity 601

Part III Gravitating extended objects of string theory 605

20 String theory 607
20.1 Strings 611
20.1.1 Superstrings 614
20.1.2 Green–Schwarz actions 617
20.2 Quantum theories of strings 619
20.2.1 Quantization of free-bosonic-string theories 620
20.2.2 Quantization of free-fermionic-string theories 624
20.2.3 D-branes and O-planes in superstring theories 626
20.2.4 String interactions 627
20.3 Compactification on S^1: T duality and D-branes 628
20.3.1 Closed bosonic strings on S^1 628
20.3.2 Open bosonic strings on S^1 and D-branes 630
20.3.3 Superstrings on S^1 631

21 The string effective action and T duality 632
21.1 Effective actions and background fields 632
21.1.1 The D-brane effective action 637
Contents

21.2 T duality and background fields: Buscher’s rules 637
 21.2.1 T duality in the bosonic-string effective action 638
 21.2.2 T duality in the bosonic-string worldsheet action 641
 21.2.3 T duality in the bosonic Dp-brane effective action 645
21.3 Example: the fundamental string (F1) 647

22 From eleven to four dimensions 650
 22.1 Dimensional reduction from $d = 11$ to $d = 10$ 652
 22.1.1 Eleven-dimensional supergravity 652
 22.1.2 Reduction of the bosonic sector 655
 22.1.3 Magnetic potentials 661
 22.1.4 Reduction of fermions and the supersymmetry rules 664
 22.2 Romans’ massive $N = 2A, d = 10$ supergravity 666
 22.3 Further reduction of $N = 2A, d = 10$ SUGRA to nine dimensions 669
 22.3.1 Dimensional reduction of the bosonic RR sector 669
 22.3.2 Dimensional reduction of fermions and supersymmetry rules 671
 22.4 The effective field theory of the heterotic string 672
 22.5 Toroidal compactification of the heterotic string 674
 22.5.1 Reduction of the action of pure $N = 1, d = 10$ supergravity 674
 22.5.2 Reduction of the fermions and supersymmetry rules of $N = 1, d = 10$ SUGRA 678
 22.5.3 The truncation to pure supergravity 680
 22.5.4 Reduction with additional U(1) vector fields 681
 22.5.5 Trading the KR 2-form for its dual 683
 22.6 T duality, compactification, and supersymmetry 685

23 The type-IIB superstring and type-II T duality 688
 23.1 $N = 2B, d = 10$ supergravity in the string frame 689
 23.1.1 Magnetic potentials 690
 23.1.2 The type-IIB supersymmetry rules 691
 23.2 Type-IIB S duality 691
 23.3 Dimensional reduction of $N = 2B, d = 10$ SUGRA and type-II T duality 694
 23.3.1 The type-II T-duality Buscher rules 697
 23.4 Dimensional reduction of fermions and supersymmetry rules 698
 23.5 Consistent truncations and heterotic/type-I duality 700

24 Extended objects 703
 24.1 Introduction 703
 24.2 Generalities 704
 24.2.1 Worldvolume actions 704
 24.2.2 Charged branes and Dirac charge quantization for extended objects 708
 24.2.3 The coupling of p-branes to scalar fields 712
 24.3 General p-brane solutions 715
 24.3.1 Schwarzschild black p-branes 715
Contents

24.3.2 The p-brane α-model 717
24.3.3 Sources for solutions of the p-brane α-model 720

25 The extended objects of string theory 724
25.1 String-theory extended objects from duality 725
 25.1.1 The masses of string- and M-theory extended objects from duality 728
25.2 String-theory extended objects from effective-theory solutions 734
 25.2.1 Extreme p-brane solutions of string and M theories and sources 736
 25.2.2 The M2 solution 737
 25.2.3 The M5 solution 739
 25.2.4 The fundamental string F1 741
 25.2.5 The S5 solution 742
 25.2.6 The Dp-branes 743
 25.2.7 The D-instanton 745
 25.2.8 The D7-brane and holomorphic (d − 3)-branes 746
 25.2.9 Some simple generalizations 752
25.3 The masses and charges of the p-brane solutions 753
 25.3.1 Masses 753
 25.3.2 Charges 755
25.4 Duality of string-theory solutions 756
 25.4.1 N = 2A, d = 10 SUEGRA solutions from d = 11 SUGRA solutions 757
 25.4.2 N = 2A/B, d = 10 SUEGRA T-dual solutions 760
 25.4.3 S duality of N = 2B, d = 10 SUEGRA solutions: pq-branes 761
25.5 String-theory extended objects from superalgebras 762
 25.5.1 Unbroken supersymmetries of string-theory solutions 765
25.6 Intersections 769
 25.6.1 Brane-charge conservation and brane surgery 773
 25.6.2 Marginally bound supersymmetric states and intersections 774
 25.6.3 Intersecting-brane solutions 775
 25.6.4 The (a1−a2)-model for p1- and p2-branes and black intersecting branes 776

26 String black holes in four and five dimensions 780
26.1 Composite dilaton black holes 781
26.2 Black holes from branes 783
 26.2.1 Black holes from single wrapped branes 783
 26.2.2 Black holes from wrapped intersecting branes 785
 26.2.3 Duality and black-hole solutions 794
26.3 Entropy from microstate counting 796

27 The FGK formalism for (single, static) black holes and branes 798
27.1 The d = 4 FGK formalism 799
 27.1.1 FGK theorems and the attractor mechanism 804
Contents

27.1.2 The FGK formalism for $N = 2, d = 4$ supergravity 808
27.1.3 Flow equations 811

27.2 The general FGK formalism 813
27.2.1 FGK theorems for static flat branes 818
27.2.2 Inner horizons 819
27.2.3 FGK formalism for the black holes of $N = 1, d = 5$ theories 820
27.2.4 FGK formalism for the black strings of $N = 1, d = 5$ theories 821

27.3 The H-FGK formalism 822
27.3.1 For the black-hole solutions of $N = 1, d = 5$ 824
27.3.2 For $N = 2, d = 4$ black holes 826
27.3.3 Freudenthal duality 828

Appendix A Lie groups, symmetric spaces, and Yang–Mills fields 830
A.1 Generalities 830
A.2 Yang–Mills fields 834
 A.2.1 Fields and covariant derivatives 834
 A.2.2 Kinetic terms 836
 A.2.3 SO($n_+, n_-)$ gauge theory 838
A.3 Riemannian geometry of group manifolds 841
 A.3.1 Example: the SU(2) group manifold 842
A.4 Riemannian geometry of homogeneous and symmetric spaces 843
 A.4.1 H-covariant derivatives 846
 A.4.2 Example: round spheres 847

Appendix B The irreducible, non-symmetric Riemannian spaces of special holonomy 849

Appendix C Miscellanea on the symplectic group 851
C.1 The symplectic group 851

Appendix D Gamma matrices and spinors 858
D.1 Generalities 858
 D.1.1 Useful identities 866
 D.1.2 Fierz identities 867
 D.1.3 Eleven dimensions 868
 D.1.4 Ten dimensions 870
 D.1.5 Nine dimensions 871
 D.1.6 Eight dimensions 871
 D.1.7 Two dimensions 872
 D.1.8 Three dimensions 872
 D.1.9 Four dimensions 872
 D.1.10 Five dimensions 874
 D.1.11 Six dimensions 875
D.2 Spaces with arbitrary signatures 876
 D.2.1 AdS$_4$ gamma matrices and spinors 879
Contents

D.3 The algebra of commuting spinor bilinears 883
 D.3.1 Four-dimensional case 883
 D.3.2 Five-dimensional case 889

Appendix E Kähler geometry 893
 E.1 Complex manifolds 893
 E.1.1 Hermitian connections 896
 E.1.2 Holomorphic isometries of complex manifolds 897
 E.2 Almost complex structures and manifolds 898
 E.3 Kähler manifolds 899
 E.3.1 Holomorphic isometries of Kähler manifolds 901

Appendix F Special Kähler geometry 905
 F.1 Special Kähler manifolds 905
 F.2 The prepotential 909
 F.3 Holomorphic isometries of special Kähler manifolds 911

Appendix G Quaternionic-Kähler geometry 914
 G.1 Triholomorphic isometries of quaternionic-Kähler spaces 918
 G.1.1 Alternative notation for the $d=5$ case 921

Appendix H Real special geometry 923
 H.1 The isometries of real special manifolds 925

Appendix I The generic scalar manifolds of $N \geq 2, d=4$ SUEGRAs 928

Appendix J Gauging isometries of non-linear σ-models 933
 J.1 Introduction: gauging isometries of Riemannian manifolds 934
 J.2 Gauging holomorphic isometries of complex manifolds 939
 J.3 Kähler–Hodge manifolds 939
 J.4 Gauging holomorphic isometries of special Kähler manifolds 943
 J.5 Gauging isometries of quaternionic-Kähler manifolds 945
 J.5.1 Alternative notation for the $d=5$ case 947
 J.6 Gauging isometries of real special manifolds 947

Appendix K n-spheres 949
 K.1 S^3 and S^7 as Hopf fibrations 951
 K.2 Squashed S^3 and S^7 952

Appendix L Palatini’s identity 953

Appendix M Conformal rescalings 954

Appendix N Connections and curvature components 955
 N.1 For a $d=3$ metric 955
 N.2 For some $d=4$ metrics 955
Contents

N.2.1 General static, spherically symmetric metrics (I) 955
N.2.2 General static, spherically symmetric metrics (II) 956
N.2.3 $d = 4$ IWP-type metrics 957
N.2.4 The $d = 4$ conformastationary metric 958

N.3 For some $d > 4$ metrics 959
N.3.1 $d > 4$ general static, spherically symmetric metrics 959
N.3.2 The $d = 5$ conformastationary metric 960
N.3.3 A general metric for (single, black) p-branes 961
N.3.4 A general metric for (composite, black) p-branes 962
N.3.5 A general metric for extreme p-branes 963
N.3.6 Brinkmann metrics 964

N.4 A five-dimensional metric with a null Killing vector 965

Appendix O The harmonic operator on $\mathbb{R}^3 \times S^1$ 967

References 969

Index 1002
Preface to the second edition

In spite (or because) of its relentless progress, science is a perpetually unfinished work and so must be a description of any field of research at a given time. The first edition of this book tried to review the foundations and main achievements of the field that we called *semiclassical string gravity* covering the basics of general relativity, supergravity, and superstring theory\(^1\) aiming to provide a complete and self-consistent introduction to the effective field theory description and the black-hole and black-brane solutions of the latter (ten-dimensional supergravity and some of its compactifications). However, many interesting topics and results had to be omitted then due to lack of space and many others have emerged in the following years and I started feeling quite soon that the book was not complete and the goals I had set forth had not been reached.

Of course, for the aforementioned reasons, it is intrinsically impossible to give a complete and final description of this field in the absolute sense, but I think (the reader will be the judge) that the inclusion of a reasonable number of new topics was necessary and will make the book much more useful. The second edition is the result of trying to cover that necessity while preserving the self-consistency of the book by adding background and complementary material.

The two main gaps I have tried to close are the lack of a complete discussion of the black-hole attractor mechanism and a description of the classification/characterization of the supersymmetric solutions of general (matter-coupled) four-dimensional supergravities.\(^2\) These two subjects are linked by the original discovery of the attractor mechanism in supersymmetric extremal black-hole solutions of \(N = 2, d = 4\) supergravity coupled to vector supermultiplets.

\(^1\) This field, lying at the triple intersection of gravity, supergravity, and superstring theory, could well be named by the acronym *GRASS*.

\(^2\) There are gaps in many other directions that could have been completed as well. For instance, a chapter on higher-derivative modifications of GR (\(f(R)\) theories in particular), a deeper discussion on the definition of conserved charges in gauge theories (including gravity and supergravity) and the relation with the symmetry groups of given boundary conditions (for Kerr/CFT duality purposes), an introduction to AdS/CFT correspondence, the inclusion of asymptotically AdS and stationary solutions etc. could have been found useful by many readers. The final choice is quite subjective and associated to the author’s own taste and limits.
A self-consistent description of these two subjects has required, first, the addition of several new chapters (Chapters 6–8) on matter-coupled $N = 1$ to $N = 8$ four-dimensional supergravities, including detailed descriptions of the gaugings of the $N = 1$ and $N = 2$ theories. Due to the relation via KK dimensional reduction between $N = 1, d = 5$ coupled to vector multiplets and the cubic models of $N = 2, d = 4$ supergravity, a chapter on the former (Chapter 9) has also been included, and the dimensional reduction has been performed in Chapter 15. Again, several appendices (Appendices E–J) describing the geometries of the scalar manifolds of these supergravities and the gauging of their isometries have been added for the sake of self-consistency. Furthermore, since the description of those supergravities makes heavy use of the results by Gaillard and Zumino on the general duality symmetries of (the equations of motion of) four-dimensional field theories, a section (Section 2.6) has been added describing them and their extension to higher dimensions.

With this background at hand we have been able to address the classification/characterization of the supersymmetric solutions of those supergravity theories using the Killing spinor bilinear method in Chapter 18, extending the results on the maximally supersymmetric ones of the first edition, and we have applied it in Chapter 19 to the construction of general families of supersymmetric black-hole solutions including multi-black-hole solutions and five-dimensional supersymmetric black rings.

The attractor mechanism has been explained in Chapter 27 in the framework of the Ferrara–Gibbons–Kallosh formalism and its (spacetime and worldvolume) higher-dimensional extension. Finally, the H-FGK formalism connects the results on supersymmetric black-hole solutions of Chapter 19 with the results of the FGK formalism.

There are many other minor additions: an introduction to the embedding tensor formalism (Section 2.7), a review of non-linear electric–magnetic duality within Section 2.6, the algebra of four- and five-dimensional spinor bilinears (Section D.3), etc.

With the addition of all this new and highly correlated material, the organization of the book has become quite non-linear. For instance, general duality (Gaillard–Zumino) symmetries (Section 2.6) are described long before the simplest electric–magnetic duality transformations are introduced (Section 12.7). These non-linearities have no easy and economical solution, but, hopefully, they can be sorted out thanks to the cross-references provided in the main text. The index should also be helpful to those searching for specific theories, solutions, and results.

Since the publication of the first edition, several excellent books on gravity [1284, 557], supergravity [564], and superstrings [111, 860, 1248] have appeared. They deal with the basics of gravity, supergravity, and superstrings in much more depth, but I think the interdisciplinary topics studied in this book (whose contents do not fit in a nutshell, not even in a coconut shell!) provide a useful complement not specifically covered by any of them.

Just as new material had to be added to this edition, I must also add the names of people to whom I am grateful as a scientist, as a person, or both. First and foremost, I have to thank my family (Marimar, Tomás, and Diego) for their understanding and support, because nothing would have been possible without them. My students Jorge Bellorín, Pablo Bueno, Wissam Chemissany, Mechthild Hübscher, Carlos Shahbazi, and Simone Sorgato, and young collaborators Pietro Galli, José Juan Fernández–Melgarejo, Jelle Hartong, Jan Perz, Diederick Roest (now not so young!), and Silvia Vaulà helped and pushed me into...
new directions and taught me many things which are now in this book. I have also learned many new things from Eric Bergshoeff, Renata Kallosh, and Roberto Emparan that have found a place here. Their support, as well as that of Enrique Álvarez, Luis Álvarez-Gaumé, José Adolfo de Azcárraga, Igor Bandos, Yolanda Lozano, and Emilio Torrente-Luján, has been essential.

My long-time collaborator Patrick Meessen deserves a special mention, and he has my long-lasting gratitude for his many direct and indirect contributions to this book, for the time and energy spent in our common projects, and for his friendship. Joaquim Gomis believed in this project and shared with me his courage and wisdom. I have learned many useful things from him ¡Moltes gràcies Quim!

The hospitality and financial support of the CERN Theory Division and the Instituto Balseiro in Bariloche have provided the calm and positive working environment that I badly needed to conclude the book. Thank you very much.

I would also like to thank Irene Pizzie for her thorough review of the manuscript. She has eliminated most inconsistencies and has made the book much more readable. Whatever defects remain are my sole responsibility.

Finally, I must thank Simon Capelin from Cambridge University Press for suggesting, encouraging, and allowing me to write this second edition to my entire satisfaction (so I am the only one to blame for its shortcomings), showing he has boundless patience.

Comments and notifications of misprints can be sent to the e-mail address Tomas.Ortin@csic.es. The errata will be posted in http://ramon.ift.uam-csic.es/prc/misprints.html.
String theory has lived for the past few years during a golden era in which a tremendous upsurge of new ideas, techniques, and results has proliferated. In what form they will contribute to our collective enterprise (theoretical physics) only time can tell, but it is clear that many of them have started to have an impact on closely related areas of physics and mathematics, and, even if string theory does not reach its ultimate goal of becoming a theory of everything, it will have played a crucial, inspiring role.

There are many interesting things that have been learned and achieved in this field that we feel can (and perhaps should) be taught to graduate students. However, we have found that this is impossible without the introduction of many ideas, techniques, and results that are not normally taught together in standard courses on general relativity, field theory, or string theory, but which have become everyday tools for researchers in this field: black holes, strings, membranes, solitons, instantons, unbroken supersymmetry, Hawking radiation They can, of course, be found in various textbooks and research papers, presented from various viewpoints, but not in a single reference with a consistent organization of the ideas (not to mention a consistent notation).

These are the main reasons for the existence of this book, which tries to fill this gap by covering a wide range of topics related, in one way or another, to what we may call *semiclassical string gravity*. The selection of material is according to the author’s taste and personal preferences with the aim of self-consistency and the ultimate goal of creating a basic, pedagogical, reference work in which all the results are written in a consistent set of notations and conventions. Some of the material is new and cannot be found elsewhere.

Precisely because of the blend of topics we have touched upon, although a great deal of background material is (briefly) reviewed here, this cannot be considered a textbook on general relativity, supergravity, or string theory. Nevertheless, some chapters can be used in graduate courses on these matters, either providing material for a few lectures on a selected topic or combined (as the author has done with the first part, which is self-contained) into an advanced (and a bit eclectic) course on gravity.

It has not been too difficult to order logically the broad range of topics that had to be discussed, however. We can view string theory as the summit of a pyramid whose building blocks are the theories, results, and data that become more and more fundamental and basic the more we approach the base of the pyramid. At the very bottom (Part I) one can find tools
such as differential geometry and the use of symmetry in physics and fundamental theories of gravity such as general relativity and extensions to accommodate fermions such as the CSK theory and supergravity. The rest of the book is supported by it. In particular, we can see string theory as the culmination of long-term efforts to construct a theory of quantum gravity for a spin-2 particle (the graviton), and our approach to general relativity as the only self-consistent classical field theory of the graviton is intended to set the ground for this view.

Part II investigates the consequences, results, and extensions of general relativity through some of its simplest and most remarkable solutions, which can be regarded as point-particle like: the Schwarzschild and Reissner–Nordström solutions, gravitational waves, and the Taub–NUT solution. In the course of this study we introduce the reader to black holes, “no-hair theorems,” black-hole thermodynamics, Hawking radiation, gravitational instantons, charge quantization, electric–magnetic duality, the Witten effect, etc. We will also explain the essentials of dimensional reduction and will obtain black-hole solutions of the dimensionally reduced theory. To finish Part II we introduce the reader to the idea and implications of residual supersymmetry. We will review all our results on black-hole thermodynamics and other black-hole properties in the light of unbroken supersymmetry.

Part III introduces strings and the string effective action as a particular extension of general relativity and supergravity. String dualities and extended objects will be studied from the string-effective-action (spacetime) point of view, making use of the results of Parts I and II and paying special attention to the relation between worldvolume and spacetime phenomena. This part, and the book, closes with an introduction to the calculation of black-hole entropies using string theory.

During these years, I have received the support of many people to whom this book, and I personally, owe much: Enrique Álvarez, Luis Álvarez-Gaumé, and my long-time collaborators Eric Bergshoeff and Renata Kallosh encouraged me and gave me the opportunity to learn from them. My students Natxo Alonso-Alberca, Ernesto Lozano-Tellechea, and Patrick Meessen used and checked many versions of the manuscript they used to call the PRC. Their help and friendship in these years has been invaluable. Roberto Emparan, José Miguel Figueroa-O’Farrill, Yolanda Lozano, Javier Más, Alfonso Vázquez-Ramallo, and Miguel Ángel Vázquez-Mozo read several versions of the manuscript and gave me many valuable comments and advice, which contributed to improving it. I am indebted to Arthur Greenspoon for making an extremely thorough final revision of the manuscript.

Nothing would have been possible without Marimar’s continuous and enduring support.

If, in spite of all this help, the book has any shortcomings, the responsibility is entirely mine. Comments and notifications of misprints can be sent to the e-mail address tomas.ortin@uam.es. The errata will be posted in http://gesalerico.ft.uam.es/prc/misprints.html.

This book started as a written version of a review talk on string black holes prepared for the first String Theory Meeting of the Benasque Center for Theoretical Physics, back in 1996; parts of it made a first public appearance in a condensed form as lectures for the charming Escuela de Relatividad, Campos y Cosmología “La Hechicera” organized by the Universidad de Los Andes (Mérida, Venezuela); and it was finished during a long-term visit to the CERN Theory Division. I would like to thank the organizers and members of these institutions for their invitations, hospitality, and economic support.