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Preface

The representation theory of finite groups was developed around 1900 by Frobe-
nius, Schur and Burnside. The theory was first concerned with representing
groups by groups of matrices over the complex numbers or a field of character-
istic zero. Representations over fields of prime characteristic, called “modular
representations” (as opposed to “ordinary” ones), were considered somewhat
later, and its theory began with fundamental papers by R. Brauer starting in
1935. Despite its age, the representation theory of finite groups is still develop-
ing vigorously and remains a very attractive area of research. In fact, the theory
is notorious for its large number of longstanding open problems and challenging
conjectures. The availability of computers, the development of algorithms and
computer algebra systems within the last few decades have had some impact on
representation theory, perhaps most noticeable by the appearance of the ATLAS
of Finite Groups in 1985 (see [38]). Note that we refer to this as the ATLAS in
the text.

The present book gives an introduction into representation theory of finite
groups with some emphasis on the computational aspects of the subject. The
book grew out of some sets of courses that the senior of the authors has given
at Aachen University since the early 1990s. It was our experience that many
students appreciated having many concrete examples illustrating the abstract
theory.

The range of examples in the area is rather limited if one restricts oneself
to paper and pencil work, but can be greatly enhanced by using a computer
algebra system such as GAP or MAGMA. For the examples and exercises in this
book we have chosen GAP, which can be freely obtained from http://www.
gap-system.org and for which the source code is publicly available. We did
not want to use these systems as mysterious black boxes, so we have explained
along with the theory the most important algorithms in the field, leaving out
technical details or complexity questions altogether. Instead we have included in
some examples (commented and sometimes edited) GAP-code mainly to give the
unexperienced reader an impression of how easily most of these calculations can
be done. The complete (and unedited) GAP-code and all special GAP-programs
used for the examples and exercises in this book appear on the homepage of this
book: http://www.math.rwth-aachen.de/˜RepresentationsOfGroups. Here
one can also find solutions to some of the exercises in the book. It is also planned
to include additional material and a list of errata.

vii
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viii Preface

We have treated ordinary and modular representation theory together, not
only because this seems to be economic, but also since there are so many in-
teractions. For that reason we also did not refrain from occasional forward
references, in particular in the examples given.

The book presupposes some knowledge on basic topics in abstract algebra,
such as the Sylow theorems and occasionally some Galois theory. Although
modules over algebras are defined, some familiarity with these notions will be
assumed. Also the reader should be familiar with linear algebra, including
normal forms of matrices. Tensor products are introduced, but for most of their
basic properties we refer to standard text books in algebra.

The first chapter introduces the basic notions of representation theory and
describes as examples the representations of cyclic groups and algebras. Permu-
tation modules are then discussed in some detail, because of their importance
for practical examples. Simple modules are treated in Section 1.3, including
Norton’s criterion and algorithms for proving or disproving simplicity often re-
ferred to under the key-word “Meataxe.” The chapter also includes the relevant
material on projective modules and blocks.

Ordinary characters of finite groups are treated in the second chapter. We
give several applications of characters in different areas of algebra. We also
include several algorithms for computing character tables of groups, such as the
Dixon–Schneider algorithm, which can be applied if one can compute within
a group sufficiently well to find the conjugacy classes. Other methods apply
when one knows just the centralizer orders and perhaps a few characters. The
chapter finishes with an example in which the character table of a simple group
is computed using only the order of the group.

The third chapter covers the interplay between representations of groups and
subgroups, which is, of course, vital for the representation theory of groups.
We include a section on tables of marks as introduced already by Burnside.
Marks can be interpreted as extensions of permutation characters, and tables of
marks may be extremely useful when dealing with particular groups. Of course,
Clifford theory and projective representations are covered. We also describe
B. Fischer’s method of Clifford matrices to compute character tables of certain
group extensions which often occur as local (or maximal) subgroups of simple
groups. The method is somewhat technical and perhaps best explained by giving
examples, which we do. The chapter closes with Brauer’s characterization of
characters including some applications.

The last and longest chapter is devoted to modular representation theory.
Our use of p-modular systems differs slightly from the one in the literature
and we introduce standard p-modular systems in order to arrive at uniquely
defined Brauer character tables, which we introduce in Section 4.2 using Conway
polynomials. This is important, especially when one is dealing with Brauer
characters of different groups at the same time, which very often is the case in
concrete problems. We give examples for computing Brauer character tables
using basic sets and other methods, in particular condensation. The chapter
includes an exposition on Brauer’s main theorems on blocks and the Green
correspondence. Here the book is not entirely self-contained. There are a few
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Preface ix

cases where we omit proofs and give instead proper references to the literature,
for instance Green’s indecomposability theorem in Section 4.8. Trivial source
modules are treated including Conlon’s Induction Theorem, which was already
used in an example in Section 3.5. They also provide easy examples for the
Green correspondence. We don’t give a proof of Brauer’s theorem on blocks of
defect one, but instead include some applications. Modular representations of p-
solvable groups are treated only to an extent to be able to prove the Fong–Swan
theorem and to explain the connection between the k(GV )-problem and Brauer’s
k(B)-problem for solvable groups. Modular representation theory abounds in
longstanding open problems and conjectures. The final section mentions some
of the most famous ones and verifies them in some examples.

Finally we would like to point to the literature we have used and also alterna-
tive treatments which might be useful for the reader. The most comprehensive
monographs on representation theory of groups are found in [41] and [42]. Stu-
dents who might find our first section a bit daunting should perhaps consult
some slower-paced introductory text such as [3], [73] or [97]. A standard text
mainly on ordinary character theory is [92]. Concerning modular representation
theory, [1] is an accessible introduction dealing only with modules, where [68]
deals only with characters. All aspects of modular representation theory are
covered in [57], which also contains a full proof of the Brauer–Dade theorem
on blocks with cyclic defect groups. References [125] and [126], which we have
used frequently, are not as comprehensive but are more easily accessible. For
alternative treatments see [50], [51], [109] and [10]. Of course there are many
topics that we have barely touched, or omitted altogether. We mention just
two, the theory of exceptional characters, for which we refer to [33], and the
representation theory of finite groups of Lie type covered in [25].

This book would not have been written without the existence and availability
of the GAP system. So we wish to thank the whole GAP team for its work and in
particular our colleague Joachim Neubüser, the “father” of GAP. Special thanks
are due to Thomas Breuer, who frequently helped us when we had questions or
problems with the system and who also carefully read an early version of the
manuscript suggesting a large number of improvements. We also would like to
thank the participants of the Representation Theory courses one of the authors
taught at the University of Arizona for pointing out mistakes in preliminary
versions of the manuscript.
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Frequently used symbols
Aut(G) group of automorphisms of G
cf(G, K) K-vector space of class functions on G
CG(g) centralizer of g in G
Fq finite field with q elements
g ∈G H g ∈ Hx for some x ∈ G
G = N.H extension of N by H, thus N � G and G/N ∼= H
G′ = [G, G] commutator subgroup of G
GLn(K) group of invertible elements in Kn×n, GLn(q) := GLn(Fq)
H ≤ G H is a subgroup of G
H1 =G H2 H1 = Hg

2 for some g ∈ G
H1 ≤G H2 H1 ≤ Hg

2 for some g ∈ G
Hg, gH Hg := g−1Hg, gH := gHg−1 for H ≤ G and g ∈ G
idV identity map from V to V
In, 0n n × n-identity matrix (In := [δi,j ]1≤i,j≤n),n × n-zero matrix
IrrK(G) irreducible characters of G over K, Irr(G) := IrrC(G)
IBrp(G) irreducible p-Brauer characters of G
Kn×n ring of n × n-matrices over a commutative ring K
KG group algebra of the group G over a commutative ring K
N, N0, Z natural numbers, natural numbers with 0, and integers
N � H (= N : H) split extension (semidirect product) of N by H
N · H non-split extension of N by H
NG(H) normalizer of H in G
1G trivial character of G
1K or 1 one of the commutative ring K.
Out(G) group of outer automorphisms of a group G
Q, R, C rational, real and complex numbers
R× multiplicative group of units (= invertible elements) of a ring R
Sn, An symmetric and alternating group of degree n
SLn(K) := {g ∈ GLn(K) | det g = 1}, SLn(q) := SLn(Fq)
Z(G), Z(A) the center of a group G or a ring A
δi,j Kronecker delta
ζm, Qm ζm := exp(2πi

m ) ∈ C, Qm := Q(ζm) for m ∈ N
ϕT, AT transposed linear map or matrix
(χ, ψ)G := 1

|G|
∑

g∈G χ(g)ψ(g−1) for χ, ψ ∈ cf(G, K)

x
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