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Introduction

The science of optics, like every other physical science, has two different
directions of progress, which have been called the ascending and the
descending scale, the inductive and the deductive method, the way of
analysis and of synthesis. In every physical science, we must ascend from
facts to laws, by the way of induction and analysis; and must descend
from laws to consequences, by the deductive and synthetic way. We must
gather and groupe appearances, until the scientific imagination discerns
their hidden law, and unity arises from variety: and then from unity must
re-deduce variety, and force the discovered law to utter its revelations of
the future.

William Rowan Hamilton (1805–1865)1

It is a fact of immediate importance to our everyday experience that light nearly
always travels in straight lines from the source to our eyes, perhaps scattering off
some object along the way.2 Without the ability to assume this as a fact about the
world around us, our extraordinary talent for instinctively comprehending spatial
relationships in everyday life would be severely compromised. Consider how much
computer power must be expended to disentangle the multiple images of distant
galaxies3 to map the dark matter distribution in the visible universe [MRE+07].
Imagine what life would be like if we had to do similar mental computations just
to navigate around the furniture in our living room.4

1 From “On a general method of expressing the paths of light, and of the planets, by the coefficients of a
characteristic function,” by WR Hamilton (1833) [Ham33].

2 That rays travel in straight lines was fully appreciated by the ancient world. See, for example, Euclid’s Optics
(ca. 300 BCE) [Bur45] which begins with the statement: “Let it be assumed that lines drawn directly from the
eye pass through a space of great extent.” (emphasis added) From this simple insight, Euclid lays the groundwork
for geometrical optics and projective geometry, which form the basis for modern fields like computer animation.
See Darrigol [Dar12] for a recent survey of the history of optics from antiquity to the nineteenth century.

3 Using Einstein’s theory of gravitational lensing.
4 This leads to many other interesting questions, such as: What types of spatial imagery do animals possess

that evolved in the dark, or in murky environments such as muddy water? Some, like bats and dolphins, use
echolocation, which in many cases can provide a spatial image since ultrasound waves locally travel in straight
lines, too. But what type of spatial imagery do animals possess that live largely by sense of smell, such as ants?
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2 Introduction

How do we build upon this insight that light nearly always travels in straight
lines in order to develop a theory with predictive power? More importantly, how
can we develop a theory that can encompass those cases where light does not
travel in straight lines? And, looking further, can we develop a theory that can be
extended to other types of waves in other settings? In the following sections, we
selectively discuss some foundational concepts that we will find useful for the rest
of the book. This is not a historical survey of the development of ray tracing. The
history of optics and wave theory is vast, and the story too complex, for us to do
more than touch upon the most relevant highlights to begin stocking our toolkit.
Some suggestions for further reading are given along the way for readers who want
more detail.

1.1 Fermat’s principle of stationary time

1.1.1 General comments

A major unifying theme of this book concerns the power of variational principles.
These have a venerable history. In the first century CE, the mathematician and
inventor Heron of Alexandria posed, and solved, the following problem in planar
geometry: Given a line and two points not on the line, what is the shortest path
between the two points that touches the line? If the points lie on opposite sides
of the line, then the path connecting them crosses the line and the shortest path
is simply a straight line. However, if they lie on the same side of the line, then
Heron proved (without the use of calculus!) that the shortest path obeys the law of
reflection. This basic principle of optics was therefore known in antiquity, and it
was known to satisfy a minimization principle.

Given that light travels in straight lines, and that rays obey the law of reflection,
why invoke a least-time principle? Because the path of least time and the path
of shortest length are only equivalent if the speed of light is constant along the
path. Feynman famously pointed out that lifeguards must solve for the least-time
path every time they rescue a swimmer: they must determine how far to run along
the beach before they dive into the water, where their speed of propagation drops
dramatically. If they are good at their job, their path obeys Snell’s Law, as we’ll
discuss.5

Let’s start with the original form of Fermat’s principle of least time, and improve
it as we pursue the implications. The least-time principle asserts that of all possible
paths light might take from the source to the point of observation, it will take the
path that requires the least time. We will adopt the convention that the actual paths
light follows are called rays, to distinguish them from all the possible paths we

5 More recently, ants have been found to follow the least-time path as well. See Oettler et al. [OSZ+13] .
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1.1 Fermat’s principle of stationary time 3

Figure 1.1 The point source S and the point of observation O can be connected
by an infinite number of paths, γ . Fermat’s principle of least time states that the
light ray follows that particular path between S and O for which the time taken is
minimal.

might imagine. We should emphasize, of course, that the source will in general
emit light in many different directions. The principle relates to that particular ray
which travels from the source point to the observation point and does not concern
itself with the rest, although in principle the observation point is arbitrary. We will
return to this important issue in a moment.

Fermat used the least-time principle around 1657 to derive what we now call
Snell’s Law, which we will discuss in a moment. Here we note that, although
Galileo famously described an attempt to measure the speed of light by flashing
lanterns about a mile apart in the 1630s, the finiteness of the speed of light was
not firmly established until 1676. The astronomer Roemer had detected a regular
variation over some years in the timing of the observed eclipses of Io, a moon of
Jupiter, relative to the predicted times. The slight advance or retardation of the times
for Io to disappear and reappear behind Jupiter depended upon whether Earth and
Jupiter were on the same or opposite sides of the Sun. Roemer correctly attributed
this apparent change to the finite speed of light, which led to the estimate c ≈
140,000 miles per second (see Hockey et al. [Sch07]).

1.1.2 Uniform media

Start with the simplest case, where light has the constant speed c and no obstacles
are present. We assume the light is emitted by a point source at S, and the observer
is at the point O (see Figure 1.1). The travel time from S to O is

T [γ ] = L[γ ]

c
, (1.1)

where L[γ ] is the length of the path γ from source to observer. It is blindingly
obvious6 to everyone but theoretical physicists and mathematicians that the shortest
path between two points is a straight line. But, of course, it is a worthwhile exercise
in variational principles to prove it (see Problem 1.1).

6 Pun intended.
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4 Introduction

1.1.3 Snell’s Law

Thus, the least-time path and the shortest-length path are the same in the simplest
case where the light speed is constant. But the least-time principle leads to some-
thing new: Suppose S and O lie in two different regions. The source lies in region 1,
where the speed of light is c/n1. The observation point is in region 2, where the
speed of light is c/n2.7 We leave it as an exercise for the reader to prove that the
least-time principle in this case leads to what we now call Snell’s Law8 for the
bending of rays at the interface

n1 sin θ1 = n2 sin θ2. (1.2)

An approximate form of Snell’s Law had been established by Ptolemy (ca. CE
90–168), in terms of the ratios of the angles. This is only correct for rays that are
nearly perpendicular to the interface. It appears that the correct form involving the
sines of the angles was discovered by the Persian astronomer-mathematician Ibn
Sahl around the year 984 CE (see Hockey et al. [Ber07]), though this form was
not known in the West until the early seventeenth century, when the invention of
the telescope (1608) would have motivated the development of improved theories
and measurements of light refraction for lens design.9 Snell’s Law was established
empirically, of course, and there are multiple claims to primacy in the literature
of the early mid 1600s. What is certain is that Fermat was aware of the law of
refraction (1.2), and showed that his principle of least time could be used to derive it.

The combination of straight-line rays within uniform regions, and Snell’s Law
at the interface between regions, forms the basis for ray optics and lens theory.
Kepler was the first to provide a theoretical explanation for the telescope, using ray
theory for compound lens systems. This theory first appeared in Kepler’s Dioptrice
(1611).10

Observation shows that the refractive index depends upon the color of light.
When this effect is included, the theory of prisms emerges and – through the
possibility of a double internal reflection within raindrops – the theory of the
rainbow.11 Thus, many of the design principles for microscopes, telescopes,

7 The constants n1 and n2 are the refractive indices; θ1 and θ2 are the angles formed by rays in the two regions
and the local normal at the interface. See Figure 3.4, Section 3.5.

8 See Problem 1.2.
9 See Willach [Wil08] for an interesting account of the evolving crafts of glass and lens manufacture in the late

Middle Ages and how these contributed to the invention of the telescope. Going even further back, for those
interested in the history of lenses in the classical world, a survey of what is known about the use of lenses in
the Graeco-Roman world can be found in Plantzos [Pla97]. We thank our colleague Professor Lily Panoussi
for bringing this reference to our attention.

10 This book, written in Latin, has not yet been translated into English, although high-quality scans of the original
are available online. It is interesting to note that the first figure to appear in the text concerns a means to measure
the refractive properties of materials.

11 Descartes discussed what is now considered the correct geometrical explanation in his 1637 Discourse on
Method. Earlier scholars in China and the Middle East also realized the importance of internal reflection for
explaining the rainbow by using glass spheres as laboratory models of raindrops.
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1.1 Fermat’s principle of stationary time 5

cameras, eyeglasses, and the explanation of some of the most beautiful of atmo-
spheric phenomena, follow from the principle of least time.

Isaac Newton (1643–1727) made important contributions to the theory of optics
and revolutionized the design of telescopes using methods based upon the assump-
tion that light was composed of particles, supplemented by the notion that the speed
depended upon their color [New10]. The ray theory of light fits nicely with this
hypothesis, and the success of the predictions using a ray theory seemed to confirm
the particle hypothesis. (However, Fermat and the least-time principle are not even
mentioned in Newton’s Optics.)

It was not until the work of Thomas Young (1773–1829) and Fresnel (1788–
1827) that light was shown convincingly to be a wave phenomenon, capable of
diffraction and interference like water waves.12 This built upon the much earlier
work of Huygens (1629–1695).13 This then leads to a puzzle: if light is a wave, why
does ray theory work so well? We will see in later sections that Hamilton provided
an answer to this question by showing how to construct wave fields, including
interference patterns, using an entirely new type of ray theory.

1.1.4 Distributed sources

We should point out that nonpoint sources are dealt with at this stage by simple
superposition. Each point on the extended source S ′ is treated as a point source
independent of the others. This is easy to understand if light is composed of
particles, but it is a more subtle issue if light is a wave. Use of the superposition
assumption leads to the theory of imaging optics.

This simple approach to the analysis of distributed sources is valid only if the
light emission is incoherent from one point on the source to the next. Speaking
imprecisely for the moment, by a coherent source we mean one whose rays have a
well-defined phase θ at almost all points along each ray, and that this phase function
is smoothly varying along the ray and between neighboring rays. Coherent wave
fields are the primary topic of this book, though we will return to incoherent fields
in Section 3.5.5, where we summarize a ray phase space theory for them. We note
here that the incoherence of visible light in everyday life is almost always a good
assumption.14

What is lacking in the theory so far, of course, is that we have not discussed
how to compute the light intensity. A ray could arrive at the observation point with
zero intensity, in which case the existence of the ray itself is largely meaningless.

12 Young was able to produce coherent light by using a pinhole smaller than the transverse coherence length of
sunlight. The coherence length of an extended incoherent source is the wavelength divided by the solid angle
of the source [Wol07].

13 See, for example, Fresnel’s essay in [Fre00].
14 The reader should verify that the previous statement is correct. When, outside of a physics laboratory, do you

encounter coherent visible light? What physical conditions are required to produce it?
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6 Introduction

Figure 1.2 The point source S and the point of observation O can no longer be
connected by a straight-line path, but the paths must instead go around the obstacle
B. A mirror M is present and we consider only paths that reflect from the mirror.
The least-time path is the light ray that obeys the law of reflection.

It is an observational fact that the convergence of rays increases the intensity of
light. Think of the focusing of sunlight using a lens.15 Likewise, as rays diverge, the
intensity decreases. It is physically reasonable to conjecture that a conservation law
applies, for example one modeled on treating the energy density in the light field
as a conserved fluid. If light were composed of discrete and long-lived particles,
the conservation law would follow directly from particle number conservation.
But if light is a wave, the derivation is less obvious. This will be discussed at
length later in the book, where we discuss wave energy and wave momentum
(Section 3.3.2), and we derive action conservation laws for wave fields, using both
coherent (Section 3.1) and incoherent (Section 3.5.5) formulations.

1.1.5 Stationarity vs. minimization: the law of reflection

Return to a point source S and a fixed point of observation O, but now block the
direct straight-line ray path and add a plane mirror (see Figure 1.2). This will turn
out to be a situation where the naive formulation of the principle of least time will
fail us, but it will help guide us to a better formulation. If we consider only paths
that pass from S to O after reflection from M , the path of least time reflects from M

in such a way that the angle of incidence equals the angle of reflection (as measured

15 The first mention of the use of lenses for burning and cauterizing for medicinal purposes is believed to be
Aristophanes, The Clouds, first performed ca. 423 BCE. The reference occurs in lines 767–769, see p. 64
of [Ari12]. The use of mirrors to focus light for the same purpose was also understood, as evidenced by the
famous legend of Archimedes setting fire to the Roman fleet at Syracuse, ca. 214–212 BCE.
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1.1 Fermat’s principle of stationary time 7

Figure 1.3 The point source S and the point of observation O separated by the
obstacle B, but now we consider all paths. The sequence of paths shown that do
not reflect from the mirror all have travel times less than the ray.

with respect to the local normal at the point of reflection).16 This is simply Heron’s
problem, mentioned earlier. With the law of reflection, a host of new applications
emerge: optical instruments such as reflecting telescopes (building upon Newton’s
original breakthrough design) can be analyzed.

But why should we restrict ourselves to paths that reflect from M? Why can’t
we proceed as before and consider all paths that go from S to O? In that case, it
should be clear that some of the paths shown in Figure 1.3 have travel times less
than the ray that reflects from M . In fact, of the sequence of paths shown, the one
with the shortest travel time is the one that travels in a straight line from S to the
edge of B, and then on to O. Why don’t we use that path as our least-time ray and
ignore the path that reflects from M?17

Suppose we now remove the obstacle. The straight-line path is once again the
least-time path, but we also know from experience that the ray that reflects off the
mirror will also reach the point O. A helpful way to view what is going on – and
one that is quite physical – is to think of the source S as emitting rays that travel in
straight lines in all possible directions. If they encounter the mirror M , they bounce
and satisfy the law of reflection. Almost all of the infinitude of rays emitted from
S will miss the point O. There are two that make it to O: the straight-line path and
the one that bounces off the mirror and satisfies the law of reflection along the way.

16 See Problem 1.3.
17 There is good reason to consider the path that bends around the edge of B as a ray, but it requires careful

treatment at the edge where it encounters the obstacle. In fact, the light can diffract around the edge if it
is sharp enough, so some light could reach O from S by this route. But this takes us beyond a simple ray
picture. However, we note that the Huygens–Fresnel theory of wave propagation and diffraction starts with
such considerations. See Fresnel [Fre00].
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8 Introduction

Figure 1.4 The point source S is now shown emitting rays in all directions, and
no obstacle lies between S and O. In this case, it is clear that two ray paths
make it from S to O, and that we should understand Fermat’s principle not as a
global minimization principle, but as a local stationarity principle with respect to
neighboring paths.

Figure 1.5 The law of reflection from a mirror surface arises by selecting the
shortest path for the flat mirror (left), but the longest for the curved one (right).

The straight-line path is the global winner in the race, but the second path is locally
minimal when compared to neighboring paths that also reflect off the mirror.

With these results in mind, a better formulation of Fermat’s principle is to
define rays as any path for which the travel time is stationary with respect to
small variations, and accept that there will sometimes be more than one ray that
travels from S to O, rather than insisting upon a unique global minimum. For rays
encountering mirrors, the variation is carried out only among neighboring paths
that also reflect; hence it is an example of a constrained variation in the family of
paths, not a general variation. Only by using a constrained variation at a mirror do
we recover the expected physical result.

As another example which demonstrates that the least-time principle is inade-
quate, consider the flat and curved mirrors in Figure 1.5. In Problem 1.4 it is shown
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1.1 Fermat’s principle of stationary time 9

that the ray is the shortest path (among those that reflect from the mirror) for the
flat mirror, but the longest straight-line path that reflects once off the curved mirror
shown to the right in the figure. This can be seen by starting with the straight-line
path (the ray) from S to O, and then considering a nearby path that reflects once just
before it reaches O. This path must have longer flight time than the straight-line
path. Now move the reflection point away from O toward S. When the reflection
point is in the neighborhood of S, the straight-line path becomes minimal once
again. Therefore, the flight time must have reached a maximum in between. These
two examples once again emphasize that we should formulate Fermat’s principle
as a principle of stationary time.

Before leaving the topic of reflection, we should mention that the specular
reflection we have described here is typical of highly polished surfaces. Rough
surfaces (rough on the length scale of a wavelength of light) can lead to more
diffuse types of reflection, first characterized by Lambert (1728–1777). This type
of reflection is, in fact, more common for everyday surfaces, and diffusion models
for reflection by textured surfaces are commonly used in computer graphics.18

1.1.6 Smoothly varying media

Thus, Fermat’s principle, now properly understood as a stationarity principle rather
than a minimization principle, unifies many important results that had appeared to
be distinct and brings them under one theory. It is natural, then, to extend Fermat’s
theory to situations where the refractive index varies continuously. Let’s consider
an important special case of a two-dimensional layered medium.

Suppose we have a two-dimensional system that is uniform in the x-direction,
but the refractive index varies in y: n(y). Our source lies at x = 0, and could be
extended in y (for example, it could be a building or a mountain). The point of
observation is at x1 and y = y1. Draw a path, γ = y : x �→ y(x) from a point on
the source to the point of observation

r(x) = [x, y(x)], r(0) = (0, y0), r(x1) = (x1, y1). (1.3)

The time required for light to travel along the path is given by the integral

T [y] = 1

c

∫ x1

0
n[y(x)]

√
1+ [y ′(x)]2 dx, y ′(x) ≡ dy

dx
. (1.4)

18 Rayleigh scattering should also be mentioned because it also involves a breakdown in the simple law of
reflection. Rayleigh scattering involves the scattering of light by particles that are smaller than a wavelength.
This type of scattering shows a strong frequency dependence and explains why the sky is blue; see for example
Jackson [Jac98].
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10 Introduction

Here, we use the notation T [y] to denote the fact that the elapsed time is a functional
of the path y(x).19 Requiring T [y] to be stationary with respect to small variations
in the path leads to the Euler–Fermat equation

√
1+ [y ′(x)]2

dn

dy
− d

dx

(
n y ′√

1+ [y ′(x)]2

)
= 0, (1.5)

which can be reorganized as

y ′′(x) = {
1+ [y ′(x)]2

} d ln n(y)

dy
. (1.6)

Hence, in a uniform medium (n′ = 0), we recover the previous result that the light
paths are straight lines: y ′′(x) = 0. In a nonuniform medium (n′ �= 0), however,
the light paths curve toward the region of higher refractive index: concave upward
[y ′′(x) > 0] for n′(y) > 0 and concave downward [y ′′(x) < 0] for n′(y) < 0. Fur-
ther aspects of the continuous case, including a derivation of Snell’s Law for
a continuous layered medium, the trapping of waves in channels, and mirages
are examined in Problems 1.5 through 1.8. In Problem 1.9 the general three-
dimensional case is examined.

It is important to emphasize once more that this type of ray theory depends only
upon the refractive index n(x), and implicitly assumes the waves are incoherent
(due to the lack of any reference to a phase function). There is no dispersion relation
between the wave frequency and wavevector, because there is no wavevector in
Fermat’s theory.20 The “wave equation” was unknown to Fermat and contem-
poraries. All we need to know to apply Fermat’s theory is the wave speed,
v(x) = c/n(x), so we can compute the travel time along any path.

Ray tracing of this sort can also be applied to other types of waves. For example,
computer aided tomography (CAT) reconstructs “images” by measuring the atten-
uation of X-rays along ray paths, while positron emission tomography (PET) scans
map the spatial distribution of the intensity of gamma ray emission. In acoustics,
ray theory is important for the theory of reverberation. It is used in the design of
concert halls and recording studios, and it forms the basis for ultrasound imaging.
A striking example of these ideas is the design of whispering galleries, where
sound rays skim along the gently curved wall of a room.21

19 See Appendix B for a discussion of functionals.
20 The wavevector is the gradient of the phase θ (x), as we will discuss in the next section.
21 In the audible range of frequencies (approximately 20 Hz to 20 kHz), and in typical rooms (a few, to a few

tens of meters across) the lower frequencies are not well modeled using rays, but the higher frequencies often
can be treated as traveling in straight lines, satisfying the law of reflection. This is because the wavelength of
sound waves is λ = cs/f and, with a sound speed of ∼ 300 m/s, we have λ ranging from 15 m for the lowest
audible frequencies down to 1.5 cm for the highest audible frequencies. The information needed for human
speech recognition lies in the mid-range of frequencies.
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