
1 The art and science of the drug 
discovery pipeline: History of drug 
discovery
William T. Loging

The disease condition is a standard in the lives of humans worldwide. As far back 
as the Roman era, early investigators pondered the reason for a wide array of disor-
ders, such as typhoid and polio. In no place was this more evident than the bubonic 
plagues of the Middle Ages, which are reported as causing the deaths of more than 
30% of the population in Europe (Alchon, 2003). As the observational science of 
biology grew, individual scientists increased their understanding of the underlying 
causes of human illness. In the nineteenth century, scientists like Louis Pasteur 
made significant contributions to the human understanding of microbiology and 
bacteriology. Pasteur’s determination to understand human illness was born of the 
fact that several of his children did not survive to adulthood (Feinstein, 2008), a 
standard occurrence preceding the advent of twentieth-century medicine. Less than 
200 years ago, prior to Pasteur’s discoveries, it was coarsely thought that life spon-
taneously generated from inert materials (Farley and Geison, 1974); this thinking 
gave little value to the washing of hands and other hygienic procedures. However, 
additional discoveries quickly followed, such as those made by innovative physician 
scientists like Joseph Lister, who deduced ground-breaking procedures on aseptic 
treatment of patients.

The fundamentals of modern drug discovery can be found as an outline to the 
pioneering work of both Edward Jenner and Alexander Fleming. Although occur-
ring more than 50 years ago, their contributions to combating human illnesses have 
collectively saved tens of millions of human lives; work that first started with an 
observation  – one that caught their interest (Willis, 1997). Jenner observed that 
milkmaids were less susceptible to smallpox, and hypothesized that their immunity 
was due to contracting cowpox, an illness less virulent but related to smallpox. He 
successfully tested this hypothesis by inoculating human test subjects with cowpox 
and observed that this protected them from contracting smallpox (Barquet and 
Domingo, 1997). In the 1700s, it was estimated that nearly half  a million people in 
Europe were killed by the Variola virus, the cause of smallpox (Behbehani, 1983). 
Due, in part, to Jenner’s pioneering work on smallpox vaccination and immunity, 
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the World Health Organization declared in 1979 that smallpox was eradicated 
worldwide.

The path to Alexander Fleming’s discovery of antibiotics began when he 
observed Penicillium notatum fungi growing in laboratory glassware (that he was 
about to wash after being on vacation), and noted the mechanisms of antibiotic 
zones. Fleming was not thinking about a “target” in the way that modern drug 
discovery scientists think, but he merely noticed that bacteria were not growing 
where some should have been. It is interesting to note that Fleming could have let 
this observation pass without notice, but luckily for the millions of people whose 
lives were saved by his discovery, he exhibited one of the main characteristics of an 
innovative scientist: he was inquisitive about what he observed. In fact, during his 
observation he was famously quoted as remarking “That’s funny” (Brown, 2004). 
The road to commercial antibiotics, ones that patients could orally take to cure 
their bacterial infections, was not an easy one, but it did serve as a template for 
modern-day drug discovery. The creation of the drug discovery paradigm that was 
created in the twentieth century relied on inputs from multiple scientists as well as 
high-level strategic thinkers (Paul et al., 2010). However, in the example of both 
Jenner’s and Fleming’s discoveries, once the impacts of their findings were noted as 
beneficial in alleviating the effects of human disease, it was reasonable to assume 
that treatments for other illnesses could be identified by applying similar innovative 
approaches. The idea that one could create a treatment that would cure or alleviate 
diseases instilled hope for other debilitating illnesses like polio and led to subse-
quent additional discoveries. Because of this, generations will never have to fear 
the words “smallpox” or “polio”; it is a fact that we too often take for granted in 
today’s modern world.

The birth of computational biology

Biologists are often at a disadvantage when it comes to understanding the complex 
workings of the human body. Unlike engineering or other scientific fields, no com-
plete blueprint exists for the complex, everyday workings of the human condition. 
One of the discrete advantages to our race is that we are not clones of each other; 
however, genetic variations often make it extremely difficult to account for a singu-
lar working model of a human being. This fact forces biologists to “learn as they 
go along” and requires them to rely on comparative biology for understanding the 
inner workings of normal and diseased states. Comparative biology is conducted 
by first observing a normal population of cells, tissues, or even a live organism 
and comparing their functions to those with disease. During the molecular biol-
ogy revolution of the 1980s, scientists began generating more and more data about 
cellular machinery by using technics such as Southern blotting (Southern, 1975) 
and phage display. As these data were being generated, the standard biologist was 
becoming quickly inundated with higher amounts of information to sift through. 
The advent of gene sequencing also meant that researchers now had to measure, 
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store, and review long lists of CTAGs, the makings of the genetics code. A new field 
of science needed to be created in order to keep up with these large volumes of data. 
Fortunately for these researchers, the 1980s was the beginning of the computer age 
and created a serendipitous intersection in the two fields for which both biology and 
computer science came together in the form of bioinformatics and computational 
biology. Whether described as dry biology, in silico biology, conceptual biology or 
knowledge discovery (Weeber et al., 2003), or electronic biology (eBiology; Loging 
et al., 2007), bioinformatics and computational biology techniques have a key role 
in the application of electronic data in drug discovery.

The fields of bioinformatics and computational biology are, by nature, deemed 
to be high-throughput for a number of reasons. First, they make use of multiple 
well-known, large-scale and open-source data that are coupled with a wealth of 
established uses and literature. This lends naturally to the second reason: they are 
not often dependent on initial “wet-lab” investigations before they can begin. Third, 
protocols and workflows created by users within these categories are comprehen-
sive enough in that they can often be repurposed to address demands from mul-
tiple teams investigating different diseases, rather than having to be applied to one 
distinctive field of study. This makes it possible to reuse the time and investment 
already created, along with the user knowledge in setting up these computational 
workflows across numerous drug discovery projects. Last, many of the pipelines 
described in this book can be rerun regularly, which provides a means for appris-
ing new data and therefore continuous new findings. It is necessary to point out, 
and is often a reason why the promise of computational approaches can often be 
left unfulfilled, that these methodologies still eventually require input from human 
disease scientists. However, the features described within this book provide a broad 
overview to introduce the novice, as well as the experienced computationalist, to 
methods that can be implemented to provide a higher rate of return on investment, 
when compared to other, less high-throughput styles of computational biology 
used within drug discovery. Such practices can become a useful element to the in 
silico workbench of any drug discovery organization, as it is often noted that there 
are far more research and development projects to support than there are compu-
tational scientists. The subsequent chapters of this book will follow these forms of 
computational biology application along the drug discovery pipeline; from target 
identification, to small-molecule identification and optimization and ending with 
the evaluation of the physiological effects of a candidate drug in the clinical phases.

The drug discovery pipeline as assembly line

Biochemist Akira Endo is credited with the discovery of the statin, a class of drugs 
that has been shown to prevent cardiovascular disease. Investigating how one might 
combat high-cholesterol phenotypes in patients with familial hypercholesterolemia, 
following in Fleming’s line of thinking, he hypothesized that fungi generate small 
molecules to protect themselves against other opportunistic organisms. He further 
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suggested that inhibiting cholesterol synthesis of the invading species could provide 
a selective advantage to the fungi, because it was known that fungi cell membranes 
contain ergosterol in place of cholesterol. Endo’s research proved correct as he dis-
covered the first statins from his studies on fungi (Endo et al., 1976). The statin 
class went on to generate billions of dollars in revenue for the companies that mar-
ket it. Endo never benefited financially from his discovery, despite the statins being 
among the most commonly prescribed medications worldwide (Simons, 2003). 
The sheer impact of Endo’s work was highlighted by Nobel Prize Biochemists 
Michael S. Brown and Joseph Goldstein: “The millions of people whose lives will 
be extended through statin therapy owe it all to Akira Endo” (Landers, 2006). In 
2005, sales of the statin class were estimated at $18.7 billion in the USA, of which 
atorvastatin was listed as one of the world’s best-selling pharmaceuticals in history 
(Simons, 2003). I mention Dr. Endo’s work for two reasons: first, to again docu-
ment the tremendous impact that a single innovative scientist can have on the lives 
of millions of people, and second, to show that the success of Dr. Endo’s approach 
subsequently led others to envision that such discoveries could be created en masse. 
As the statin class began generating billions in revenue, additional emphasis was 
placed on new discoveries, but the path to generate these life-saving drugs can be a 
long and arduous process; therefore, the mainstream drug discovery pipeline was 
relied upon to generate novel discoveries.

The term “drug discovery” itself  is somewhat of a misnomer, as the vast amount 
of drugs that are brought to market are more often made than they are discovered. 
The historical paradigm of drug discovery processes, popularized from the early 
1990s until today (or the writing of this book), has its foundation in the following:

Stage 1 Target Identification: Disease area scientists employ comparative biology method-
ologies to define a therapeutic target (which is often a protein that plays a role in the illness). 
The approach can range from obtaining a target idea from a publication to conducting com-
plex protein or pathway screens within in vitro environments.

Stage 2  Lead Identification: The identified target is formulated into a functional 
high-throughput assay and screened against large chemical/biological libraries, often com-
posed of millions of potential candidates, for identifying probable small molecule or anti-
body inhibitors.

Stage 3 Lead Optimization: Any “hits” from the lead identification stage are then passed 
through an optimization phase for assessment of the chemical and/or biologic states that 
make the candidate drug-like. Lead candidates are then adapted, modified, and improved 
upon in order to progress the drug frontrunner to the preclinical safety and efficacy testing.

Stage 4  Preclinical Assessment: If  the candidate meets all the criteria to pass previous 
stages, it is progressed into rounds of preclinical safety and expanded efficacy assessments. 
This stage is often, depending on the disease and possible organism model, where the can-
didate is administered to lower forms of mammals, such as rodents or non-human primates.

Stage 5 Clinical Phases:  Lastly, the potential drug is used in human clinical applications, 
starting with safety testing Phase I with a small group of human subjects. If  successful, the 
candidate is then moved into continued efficacy testing in actual patients who are affected by 
the disease, in a smaller (Phase II) and subsequently broader population (Phase III). Success 
is measured in how safe the drug is, as well its level of efficacy, in human patients.
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The art and science of the drug discovery pipeline 5

Idea to targets

New drug targets are often ascertained from vast amounts of  work conducted 
mainly in the field of  biology. As mentioned before, these data provide investiga-
tors with a specific area of  intervention that would affect the progression of  a 
disease. This is highlighted where several research organizations have used dif-
ferent methods, whereas some researchers obtained target ideas by solely reading 
scientific publications. As stated before, when the concept of  target identification 
became more prevalent, scientists began relying on non-publication-based meth-
ods that utilized the large amounts of  data generated from methods such as SAGE 
(serial analysis of  gene expression) and other leading techniques (Velculescu 
et al., 1995), such as genes chips, and then to next-generation sequencing (NGS), 
where we currently stand today. New target work and comparative biology often 
go hand in hand, and no other field has benefited more from this marriage than 
the field of  oncology (Jiao et al., 2010). Standard experimental design collates 
normal, as well as cancerous, tissue that is measured from two separate states 
using several of  the techniques which will be reviewed in this book. The results 
often lead researchers to potential proteins that may play a role in the disease; for 
example, oncogenes that control cell growth are often found to be overamplified 
in the cancerous experimental arm compared to normal, whereas tumor suppres-
sors are often under-represented. Once researchers have a protein of  ascertainable 
function and it has been verified through public knowledge or internally validated 
work, then researchers can search for molecular inhibitors (small molecules or 
proteins) that can inhibit the activity of  this protein, therefore bringing the system 
back into balance with the hopes of  curing disease. In the early 2000s, sequencing 
of  genetic material was considered “high-throughput” as 30,000 base pairs could 
be processed in a time frame of  about 3 months. In fact, when the human genome 
project was completed in 2001, it took 10 years to complete, as well as costing 
more than a billion dollars (Collins and Galas, 1993). Consider now the current 
speed at which genetic material is sequenced using technology like that of  NGS. 
These applications can be applied to comparative biology studies of  both genes 
(DNAseq) and gene transcripts (RNAseq). For example, Illumina now markets 
their HighSeq X Series NGS machine as having the ability to sequence the entire 
genome of  a human being in less than one week, with cost ranges in the area of 
$1000 (www.illumina.com). This rapid advancement in genome sequencing tech-
nology, where speed is increased and cost is reduced, is nearly unprecedented 
within human history progression and has even been presented to surpass that 
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Figure 1.1 An example of the standard drug discovery pipeline.
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of Moore’s Law. With the large volumes of  data that are generated from such 
high-capacity experiments, computational biology approaches will continue to be 
in demand for the drug discovery scientist.

Lead identification

Once a single, or multiple set, nominated target protein has been identified, the 
target is moved to lead identification, where suitable small-molecule (or antibody) 
inhibitors are identified through a biological drug design assay and the use of large 
chemical libraries. The target is often placed in a high-throughput set of experi-
ments, often referred to as “screening,” where millions of small molecules are inter-
rogated for their ability to inhibit the function of the target protein in a reporter 
assay. Lead identification is a key decision-making stage for the research organ-
ization conducting it and can easily generate billions of data points, which require 
significant computational resources performed by both computational chemistry 
as well as computational biology experts. The druggability of the protein target via 
a small-molecule or antibody inhibitor is essential for the success of the discovery 
program. Computational biology plays a major role in the large-scale analyses of 
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Figure 1.2 Breakdown on DDP by phase. From Loging et al. Nature Reviews Drug Discovery 2007.
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The art and science of the drug discovery pipeline 7

these new protein sequences and their druggability by structural homology search-
ing (Lui and Rost, 2002), as well as data interpretation support from computation-
ally driven docking experiments of small molecule candidates. Molecular modeling 
techniques are typically applied to this area, as these approaches include nuclear 
magnetic resonance (Hajduk et  al., 2005) and x-ray crystallography (An et  al., 
2004). Computational biology pipelines can provide immediate impact such as by 
reviewing more than 18,000 crystal structures from the Protein Data Bank. Again, 
those researchers who can link together computational pipeline aspects will be those 
who are most successful; for example, Cheng and colleagues (2007) created a tech-
nique for a druggability calculation that joins together multiple approaches that 
generate a number of molecular descriptors into a single algorithm. These meth-
ods use established data from orally available drugs, along with correlation-specific 
data such as ligand molecular mass along with protein-binding pocket surface area; 
key physicochemical properties are then linked together with structural analyses in 
order to obtain a scoring of druggability. Not only can this approach be applied 
specifically to this example, but it can also be run computationally across the large 
sets of crystal structure data, providing a high-throughput approach to target 
assessment. As mentioned earlier, a small-molecule approach may not be the only 
desired endpoint of a drug discovery program; antibody drug generation discovery 
projects also benefit from such methodologies through employing additional data 
such as epitope placement, cellular placement and plasma availability of proteins. 
Comparable to chemical approaches that often use large libraries of small mol-
ecules, the antibody engineering provides additional methods of drugging a specific 
protein that have led to the identification of drugs that were ultimately approved 
for use in humans.

Lead optimization

As a candidate drug progresses through the DDP, researchers must focus on the 
off-target selectivity effects, in addition to focusing on the binding of the molecule 
to its primary target. Naturally, a number of in silico approaches have been cre-
ated that utilize additional data that go beyond protein homology searches. For 
example, investigators have utilized not only chemical data, but also genomic infor-
mation to address kinase selectivity (Birault et al., 2006). Further, in silico tech-
niques can utilize added data such as predicted in vivo drug metabolites, and assist 
in understanding the physiological effects of known drugs. Whereas the lead opti-
mization phase is characterized as making a drug candidate more drug-like, how 
this is accomplished is dependent upon several established approaches, such as the 
analysis of the structure–activity relationship (SAR) data. SARs are the features by 
which changes in the drug candidate may affect its ability to bind to and modulate 
the activity of its target protein. Again, intuitive scientists continue to rework the 
established drug discovery paradigm, in which researchers proved utility in the ana-
lysis of large SAR databases (Nettles et al., 2006). One of the scientific areas that 
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drug discovery researchers earnestly pursue is the understanding of small-molecule 
off-target activity.

A straightforward process would be to screen the entire human proteome with 
the compound in question; however, economic and technological requirements 
would make such an approach unfeasible. However, an in silico protocol that uti-
lizes a broad panel of the druggable genome that is representative of major protein 
families can provide the interaction potential of the small molecule in question. 
This illustration panel of proteins is not limited to just the primary target, and 
creates a profile “fingerprint” of pharmacologic activity for a given compound. 
Fliri et  al. (2005) provide a practical demonstration of how a druggable prote-
ome cross-section can be analyzed to produce a pharmacologic fingerprint for a 
small molecule. These patterns can then be compared to a larger screening drug 
test set that numbers in the thousands. In fact, the database need not be confined 
to drugs; a wide array of additional molecules, such as natural products, can also 
be used to obtain comparative pharmacologic data. These data, termed biospectra 
profiles, have also been shown to be useful in functional activity prediction (agon-
ist versus antagonist). This is useful because the small molecules brought out of 
high-throughput screening in lead identification do not normally provide this infor-
mation (Fliri et al., 2005). Biospectra can also lead researchers to understand how 
physiological effects are associated within secondary pharmacology of existing 
drugs, an approach that naturally lends itself  to drug candidate disease reposition-
ing (Campillos et al., 2008). These approaches will be discussed in a relevant case 
study later in this book.

Preclinical and clinical phases

Perhaps the most critical stages of  the drug discovery process are the progression 
through the preclinical and clinical phases before finally being submitted to appro-
priate governmental agencies for approval. As mentioned earlier, the candidate 
will likely enter into in vivo testing for the first time in this phase, being dosed to a 
wide array of  mammals and even higher organisms, such as non-human primates. 
This is often where a critical hand-off  also can take place, as the candidate is 
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Figure 1.3 The clinical phases.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-76800-9 - Bioinformatics and Computational Biology in Drug Discovery and Development
Edited by William T. Loging
Excerpt
More information

http://www.cambridge.org/9780521768009
http://www.cambridge.org
http://www.cambridge.org


The art and science of the drug discovery pipeline 9

passed from the research side of  the organization to the development side, which 
is responsible for the actual creation of  the candidate in large-enough qualities 
as required within human-based trials in a clinical setting. This critical area has 
recently been under the spotlight for its strategic placement within the drug discov-
ery process and has led to the generation of  a new conceptual field referred to as 
“translation medicine.” Many researchers had already been formulating opinions 
on the methods required to “translate” the drug candidate from the research arm 
to the development and clinical stages, and the information needed to make such a 
transition successful. Do the safety and efficacy noted in non-human models fully 
extrapolate into what will happen when the drug reaches the clinic? What data are 
required early on in the process in order to predict success? These are several of  the 
areas of  focus for the translation medicine scientist, whose main role is to provide 
scientific assurances that a specific drug program will ultimately be successful in 
the clinic – and therefore obtain approval by the appropriate governmental agen-
cies. Several computational biology tools and methodologies have been created 
to specifically assist the translational medicine scientist in dealing with the large 
amounts of  disease-based information. These data span a wide array of  genomics, 
as well as even EMR (electronic medical records) that allow for meaningful com-
parisons between those of  normal and diseased patient populations. Often, a drug 
candidate is found not to be efficacious in the clinic – then what? Many companies 
park their frontrunner in a Phase II or Phase III graveyard where the candidates 
often languish, never to be utilized in experiments, or in the extreme, never even 
talked about again, within their respective company. In the later chapters of  this 
book, we will review strategies to conduct “repositioning experiments,” providing 
insight into other possible indications in which researchers can test their candi-
dates. Prior to the year 2000, researchers appeared to focus more on the primary 
indication that brought the program forward with little thought of  conducting 
repositioning experiments. However, repositioning projects success stories, such 
as Pfizer’s sildenafil, proved that effectively replaced drug candidates could gen-
erate billions of  dollars in revenue. In the early 2010s, additional computational 
approaches – as well as entire companies devoted to the subject – were created 
(Ashburn and Tho, 2004). Along with examples of  successfully placed drug pro-
grams, it proves that often the information that may draw connections between 
drug target and indication can go unnoticed by seemingly expert staff  and that 
computational approaches can provide insight at a level not previously noted 
within the scientific field (Loging et al., 2011).

An example of when drug discovery works: PCSK9 and the  
rise of genomics-era drugs

In the early 2000s, scientists began to report on patients who had a family history 
of low “bad” or low-density lipid (LDL) cholesterol (Levy, 2015). These serum 
chemistry levels of LDL did not change regardless of diet or exercise. Comparative 
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biology experiments were with these individuals against other groups of patients 
who had familial high level of LDL. It’s interesting to note that these patients 
with extremely low LDL also had family histories of no existence of heart disease, 
whereas the opposite was true for those patients with high LDL. This provided an 
excellent opportunity for comparing the two populations and utilizing the newly 
introduced approaches of whole-genome screening. It took more than 5 years, but 
researchers discovered that one of the major differences between the two extreme 
populations was a gene called PCSK9 (Jialal and Patel, 2015). Once the gene was 
identified, the function of the newly associated cardiovascular gene had to be elu-
cidated. By conducting additional computational and wet genomics studies, it was 
later hypothesized that PCSK9 regulates the levels of LDL receptors in patients, 
a process that oversees how the liver cleanses bad cholesterol out of the blood. 
In these studies, the patients with low LDL contained mutations in PCSK9 that 
caused a loss of function in the gene, whereas the patients with high bad cholesterol 
had carried PCSK9 mutations, which amplified the function of the coding protein. 
It is now known that PCSK9 acts as a protein marker that influences the recycling 
of the LDL receptor on the liver’s surface. Due to the size of the binding inter-
face between the LDL receptor and PCSK9, the vast majority of small molecules 
tested did not provide inhibitory utility, therefore driving researchers to employ 
biotherapeutic drug discovery approaches that have led to several antibody candi-
dates, which are on track for Food and Drug Administration (FDA) approval by 
mid to late 2015 (Sabatine et al., 2015). Preliminary data from Phase III studies of 
anti-PCSK9 antibodies has given clinical signals of not only reducing LDL levels 
but also reducing the chance of heart attack or stroke in those patients adminis-
tered this drug candidate (Bloom et al., 2014). The reason why I bring this point 
up is the very important observation that drug discovery should not be limited to 
the direct applications of the step-by-step pipeline, such as idea to target first, as 
highlighted in the example of PCSK9. The pipelined process was reversed slightly 
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Figure 1.4 PCSK9 protein regulates cholesterol levels in humans.
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