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2 Linkages

Linkages are mechanisms built from stiff, inflexible bars, which we will call rigid
links, connected at freely rotating joints. You may have a linkage on your desk
similar to the one depicted in Figure I.1. Many machines contain linkages for
particular functions. Every car contains a crankshaft, a mechanism for con-
verting the linear motion induced from the sparked explosion of gasoline in
a piston chamber to the rotary motion turning the drive shaft. We’ll explore
three linkages, each with a clean mathematical story to tell, and each related
to developments on the frontiers of mathematics and computer science today:
robot arms, pantographs, and fixed-angle chains. We’ll analyze the “reachabil-
ity region” for robot arms viewed as a linear chains of links. The pantograph is
a mechanical copying and enlarging mechanism with myriad uses, especially
during the industrial revolution. Fixed-angled chains are superficially similar to
robot arms, but are primarily of interest as models of protein backbones.

Although here we are emphasizing the relevance of these linkages, our focus
will be on the mathematics behind their operation.

Figure I.1. A desk-lamp linkage. The linkage flexes at the circled joints, but is
structurally rigid otherwise.
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1 Robot Arms

Robot arms, despite their sophistication as machines, are particularly simple if
you think of them as linkages. The arm in Figure 1.1(a), developed by a British
robotics firm, is designed to apply adhesive tape to the edges of pieces of plate
glass for protection. It has a fixed base (the shoulder) to which are attached three
rigid links, corresponding roughly to upper arm, lower arm, and hand, or, in
the technical jargon, the end effector. The rotation settings at the motorized joints
determine the exact positioning of the hand as it performs its functions. The force
dynamics and engineering aspects of robot arm design are quite interesting and
challenging. However, we will focus on one simple question: determining what
is called the workspace of the robot – the spots in space it can reach. We will
pursue this question in almost absurd generality, permitting the arm to have an
arbitrarily large number of links, each of an arbitrary length.

Model. First we need to reduce a complex physical robot arm to a simple mathe-
matical model so that it can be analyzed. Typically, the initial abstraction chosen
is crude, ignoring many physical details, and then, once analyzed, gradually
made more realistic and complicated.

We reduce each robot arm piece to a straight-line segment of fixed length –
a rigid link of mathematically zero thickness. Each joint motor is reduced to
a mathematical point of zero extension joining the two incident links that it
shares. So we have reduced the physicality of a real robot arm to segments and
the endpoints of those segments; see Figure 1.1(b).

There are two more crucial physicalities to model: intersections and joint
motions. Of course, no two distinct physical objects may occupy the same space
at the same time, so the links should not be permitted to intersect – share points –
except sharing the point at a common joint. However, we start our analysis with
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4 Robot Arms

Shoulder
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Figure 1.1. (a) A robot arm. (b) Arm modeled by linkage. v0 labels the shoulder
joint, and v3 the hand.

the physically unrealistic assumption that intersections are ignored. Similarly,
although most robot joints have physical constraints that prevent a full 360◦ rota-
tion in two dimensions (2D), or free rotation in all directions in three dimensions
(3D), we assume no joint constraint – so each is a universal joint, one that has
total freedom of rotation. Later in exercises and in Chapter 3, we will constrain
the joints.

So our mathematical model of a robot arm is a chain of n links, where n is
some natural number 1,2,3, . . ., each a fixed-length segment of some prespeci-
fied length, connected by universal joints. For the robot arm in Figure 1.1, n = 3:
3 links, 3 joints (including the motorized shoulder). The hand/end effector is
not a joint, just a link endpoint. Indeed, the number of links and the number of
joints is always the same, n, under this convention of viewing the shoulder, but
not the hand, as a joint.

Now the question is: Under this model, what is the totality of locations in
3D space that an n-link robot arm can reach? This set is called the reachability
region of the arm.

At this point, we invite the reader to guess the answer that this chapter will
soon establish more formally. Reasoning from your own shoulder-to-hand link-
age may be misleading, because humans have definite (and complex) joint
constraints. Perhaps it will help intuition to imagine a specific example. Sup-
pose we have 3-link arm whose link lengths are 10, 5, and 3. What is the region
of space that the hand endpoint can reach? Hint: It is not a sphere of radius 18!

Box 1.1: Theorem

In mathematics, the term theorem is used for a concise statement of a central
result, whereas a lemma is a result that is a stepping-stone on the way to a the-
orem. A corollary is a near-immediate consequence of a theorem. Although we
will not use the term, a proposition is often used for a relatively straightforward
theorem.
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Annulus 5

1.1 Annulus

Rather than keep the reader in suspense, let us immediately move to the answer
to this question, which we encapsulate in a theorem (see Box 1.1):

Theorem 1.1

The reachability region of an n-link robot arm is an annulus.

Now we should explain the term annulus. In 2D, an annulus is the region
between two circles with the same center but different radii. Such circles are
called concentric. The 3D analog, the region between two concentric spheres of
different radii, is generally called a “spherical shell,” but we opt to use “annulus”
regardless of the dimension. See Figure 1.2(b). Right now we concentrate on 2D
and consider 3D later (p. 19). For our 3-link example with link lengths 10, 5, and
3, the reachability region is an annulus with outer radius 18 and inner radius 2.
That the inner radius is 2 is by no means obvious; it will be established later in
Theorem 1.2.

There are two special cases that we further include under the term “annulus”:
(1) If the radii of both circles are equal, the region reduces to just that circle
itself; (2) if one radius is zero, the region is the entire disk enclosed by the circle.
A circle can be viewed as a rim “wire” whereas a disk includes the points inside
the wire.

r−

r+v0

(a) (b)

r−
r+

v0

Figure 1.2. (a) 2D annulus: the region between two concentric circles. (b) 3D annu-
lus (also known as a spherical shell): the region between two concentric spheres.
Common centers are labeled v0.
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6 Robot Arms

Box 1.2: Induction

Induction is a proof technique that can be used to establish that some claim is
true for all numbers n = 1,2,3, . . .. It is akin to climbing a ladder: If you know
how to move from any one rung to the next, and you know how to reach the first
rung, then you can climb to any rung, no matter how high. To reach the first
rung, we only need prove the result holds for n = 1, the base of the induction.
Moving from one rung to the next requires proving that if the theorem holds
for n − 1 (you’ve reached that rung), then the theorem holds for n, where n
is an arbitrary natural number. Then the theorem must be true for all n, “by
induction,” as they say: From n = 1, we can reach n = 2, and from there we can
reach n = 3, and so on.

Annulus Proof. The proof of Theorem 1.1 uses a method known as induction;
see Box 1.2.

The base case is straightforward: A 1-link arm can reach the points on a circle,
and by our definition, a circle is an annulus. Now we could jump immediately
to the general case using induction. But let’s look at n = 2 to build intuition; say
the two link lengths are r1 and r2. This 2-link arm can reach all the points on a
circle of radius r2 centered on any of the points on a circle of radius r1. Figure 1.3
illustrates the idea. Imagine sweeping the red r2-circle around, centered on each
point of the blue r1-circle. The swept pink region R2 is an annulus.

Let us now consider the general case, an n-link arm, n > 1. Following the
induction paradigm, we assume that we have established the theorem for arms
up to n − 1 links. Then we know if we remove the last link of a given n-link arm

R2

r2
r1

Figure 1.3. A 2-link arm can reach points in an annulus.
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Annulus 7
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v0
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Figure 1.4. (a) Rn−1 with one possible arm of n − 1 links reaching a point p. (b) Rn

is formed by adding the points on circles centered on every point p in Rn−1, with the
radius r of these circles equal to the length of the last link of the arm.

(call it An), the shorter arm’s reachability region is an annulus, because it has
only n − 1 links. (We have just employed the “induction hypothesis”: n − 1 link
arms reach points in an annulus.) Let us call the shorter arm An−1 and its region
Rn−1. We seek to find Rn, the reachability region for An.

Let p be any point in Rn−1. We know that the hand of An−1 can reach p, as
in Figure 1.4(a). Now imagine adding the removed final link back to An−1. This
permits An to reach all the points on a circle centered on p, where the circle’s
radius r is the length of that last link. So we can construct Rn by adding the points
on a circle of radius r centered on every point p of Rn−1. See Figure 1.4(b).

Here I rely on the reader’s intuition to see that Rn is again an annulus: Adding
all these circles to an annulus results in a fatter annulus. Points p on the outer
boundary of Rn−1 reach out to a larger-radius circle bounding Rn, larger by r, and
points on the inner boundary of Rn−1 reach inward to a smaller-radius circle,
smaller by r. Circles around points p in the interior of Rn−1 fill out the remainder
of the annulus. If r is enough to reach the center of Rn−1, then Rn becomes a
disk, which we have defined as an annulus.

1.1.1 Radii

Our proof that the reachability region is an annulus does not directly yield the
radii of the annulus. In particular, it would be useful to know under what con-
ditions the reachability region is a disk, that is, when the hand can touch the
shoulder. We now address this question.

Because the answer will depend on the arm’s lengths, we will need some
notation for those. Call the lengths of the n links (�1,�2, . . . ,�n), and call the outer
and inner radii of the annulus r+ and r− respectively. The outer radius is easy:
The furthest reach of the arm is achieved by straightening each joint, stretch-
ing the arm out straight. Recalling our 3-link example with lengths (10,5,3),
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8 Robot Arms

10

5

10
5

v0

v1

v2

v1

v2

Figure 1.5. Annulus for the 2-link arm with lengths (5,10) (red) is the same as for
the arm with lengths (10,5) (blue).

r+ = 10 + 5 + 3 = 18. In general,

r+ = �1 + �2 +·· ·+ �n .

Computing the inner radius r− is less straightforward. A key idea that helps is
hinted at by Figure 1.5, which shows that the reachability annulus for an arm
consisting of two links of lengths 5 and 10 is independent of whether the longer
or the shorter is the first link, incident to the shoulder. Somewhat surprisingly,
this independence holds more generally:

Lemma 1.1

The reachability region of a robot arm is independent of the order of the link
lengths: It only depends on the numerical values of those lengths, not the order
in which they appear along the chain of links.

I will argue for this lemma before explaining its relevance to computing r−.
Let v0 be the location of the shoulder joint of the arm, and v1,v2, . . . ,vn−1,vn the
positions of the remaining joints, or, as they are commonly known in geometry,
the vertices of the chain. (The singular is vertex.) The last vertex vn is the position
of the hand, not considered a joint (because there is nothing beyond that it
joins). In any particular configuration of the arm, the vertices are at particular
points in the plane. We take v0 to be the origin of the coordinate system in which
we express the points: v0 = (0,0).
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Annulus 9

Box 1.3: Vectors

We illustrate the notion of a vector with the 3-link arm shown in Figure 1.6(a),
whose shoulder is at v0 = (0,0) and whose vertices are located at v1 = (1,1),
v2 = (1,0), and v3 = (0,3), with the shoulder at the origin v0 = (0,0). The lengths
of the links are �1 =

√
12 + 12 =√

2, �2 = 1, and �3 =
√

12 + 32 =√
10. We can view

each successive vertex as displaced from the previous one. So v2 is obtained
from v1 by moving vertically down one unit, and v3 is obtained from v2 by one
step left horizontally and three up vertically. These displacements are vectors,
and can be computed by subtracting the points coordinate by coordinate. We
will use uppercase letters with over-arrows to indicate vectors. So,

−→
V1 = v1 − v0 = (1,1)− (0,0) = (1,1)

corresponds to moving right and up 1,

−→
V2 = v2 − v1 = (1,0)− (1,1) = (0,−1)

corresponds to moving down 1, and

−→
V3 = v3 − v2 = (0,3)− (1,0) = (−1,3)

corresponds to 1 left, 3 up. Because we chose v0 = (0,0),
−→
V1 = v1 − v0 is the

same as v1: (1,1). The length of these vectors is exactly the link length which

they “span,” for example, the length of
−→
V3 is

√
10.

There is a certain ambiguity when we represent a point by its coordinates and
a vector by its coordinate displacements, for they both look the same as pairs
of numbers: Thus the point v1 has the same coordinate representation as the
vector

−→
V1. But a point is a location in the plane, whereas a vector is a displace-

ment in the plane. Every point in the plane can be viewed as a displacement
from the origin – a viewpoint that is often convenient.

Two vectors are added by adding their displacements coordinate by coordi-
nate. So the sum of the vectors (1,1) and (0,−1) is (1,0), which, not surprisingly,
is v2: −→

V1 +−→
V2 = (v1 − v0)+ (v2 − v1) = v2 − v0

which is v2 because v0 = (0,0).

The key to the proof of this lemma is to think of the vertices of the joints as
reached by a series of vector displacements from the shoulder. Vectors are an
important concept we will use in several chapters; see Box 1.3. Let us represent
the vector displacement between adjacent vertices with the symbol

−→
Vi , with−→

Vi = vi − vi−1, where the subscript i can take on any integer value between 1
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10 Robot Arms
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Figure 1.6. A 3-link arm reaching from v0 = (0,0) (white circle) to v3 = (0,3) (red
circle). All six possible permutations (indicated below each figure) of adding the three
vector displacements all reach to (0,3).
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