Quantum physics and special relativity theory were two of the greatest breakthroughs in physics during the twentieth century and contributed to paradigm shifts in physics. This book combines these two discoveries to provide a complete description of the fundamentals of relativistic quantum physics, guiding the reader effortlessly from relativistic quantum mechanics to basic quantum field theory.

The book gives a thorough and detailed treatment of the subject, beginning with the classification of particles, the Klein–Gordon equation and the Dirac equation. It then moves on to the canonical quantization procedure of the Klein–Gordon, Dirac, and electromagnetic fields. Classical Yang–Mills theory, the LSZ formalism, perturbation theory and elementary processes in QED are introduced, and regularization, renormalization, and radiative corrections are explored. With exercises scattered through the text and problems at the end of most chapters, the book is ideal for advanced undergraduate and graduate students in theoretical physics.

TOMMY OHLSSON is Professor of Theoretical Physics at the Royal Institute of Technology (KTH), Sweden. His main research field is theoretical particle physics, especially neutrino physics and physics beyond the Standard Model.
RELATIVISTIC QUANTUM PHYSICS
From Advanced Quantum Mechanics to Introductory Quantum Field Theory

TOMMY OHLSSON
Royal Institute of Technology (KTH), Sweden
In memory of my father Dick
Contents

Preface

1. Introduction to relativistic quantum mechanics 1
 1.1 Tensor notation 1
 1.2 The Lorentz group 3
 1.3 The Poincaré group 9
 1.4 Casimir operators 11
 1.5 General description of relativistic states 12
 1.6 Irreducible representations of the Poincaré group 13
 1.7 One-particle relativistic states 16
 Problems 21
 Guide to additional recommended reading 21

2. The Klein–Gordon equation 22
 2.1 Transformation properties 24
 2.2 The current 25
 2.3 Solutions to the Klein–Gordon equation 26
 2.4 Charged particles 28
 2.5 The Klein paradox 30
 2.6 The pionic atom 34
 Problems 38
 Guide to additional recommended reading 39

3. The Dirac equation 40
 3.1 Free particle solutions to the Dirac equation 45
 3.2 Problems with the Dirac equation: the hole theory and the Dirac sea 50
 3.3 Some gamma gymnastics and trace technology 52
 3.4 Spin operators 57
Contents

3.5 Orthogonality conditions and energy projection operators 61
3.6 Relativistic invariance of the Dirac equation 63
3.7 Bilinear covariants 66
3.8 Electromagnetic structure of Dirac particles and charge conjugation 68
3.9 Constants of motion 72
3.10 Central potentials 74
3.11 The hydrogenic atom 77
3.12 The Weyl equation 86
3.13 Helicity and chirality 89
Problems 90
Guide to additional recommended reading 92

4 Quantization of the non-relativistic string 94
4.1 Equation of motion for the non-relativistic string 94
4.2 Solutions to the wave equation: normal modes 97
4.3 Generalized positions and momenta 98
4.4 Quantization 99
4.5 Quanta as particles 101
Problem 103
Guide to additional recommended reading 104

5 Introduction to relativistic quantum field theory: propagators, interactions, and all that 105
5.1 Propagators 106
5.2 Lagrangians 109
5.3 Gauge interactions 111
5.4 Scattering theory and Møller wave operators 113
5.5 The S operator 115
Guide to additional recommended reading 121

6 Quantization of the Klein–Gordon field 122
6.1 Canonical quantization 122
6.2 Field operators and commutators 126
6.3 Green’s functions and propagators 129
6.4 The energy–momentum tensor 132
6.5 Classical external sources 134
6.6 The charged Klein–Gordon field 135
Problems 135
Guide to additional recommended reading 137
Contents

7 Quantization of the Dirac field
 7.1 The free Dirac field 138
 7.2 Quantization 140
 7.3 Positive energy 141
 7.4 The charge operator 144
 7.5 Parity, time reversal, and charge conjugation 145
 7.6 The Majorana field 148
 7.7 Green's functions and propagators 150
 7.8 Perturbation of electromagnetic interaction 152
 7.9 Expansion of the S operator 153
Problems 154
Guide to additional recommended reading 154

8 Maxwell's equations and quantization of the electromagnetic field 155
 8.1 Maxwell's equations 155
 8.2 Quantization of the electromagnetic field 157
 8.3 The Casimir effect 163
 8.4 Covariant quantization of the electromagnetic field 167
Problems 174
Guide to additional recommended reading 174

9 The electromagnetic Lagrangian and introduction to Yang–Mills theory 176
 9.1 The electromagnetic Lagrangian 176
 9.2 Massive vector fields 180
 9.3 Gauge transformations and the covariant derivative 182
 9.4 The Yang–Mills Lagrangian 183
Problems 186
Guide to additional recommended reading 187

10 Asymptotic fields and the LSZ formalism 188
 10.1 Asymptotic fields and the S operator 188
 10.2 The LSZ formalism for real scalar fields 192
 10.3 Proton–meson scattering 195
Guide to additional recommended reading 196

11 Perturbation theory 197
 11.1 Three different pictures 198
 11.2 The unitary time-evolution operator 199
 11.3 Perturbation of VEVs for T-ordered products 202
 11.4 The relation between the physical vacuum $|\Omega\rangle$ and the free theory ground state $|0\rangle$ 205
Contents

11.5 Specific correlation functions 207
11.6 Wick’s theorem 211
11.7 Feynman rules and diagrams 215
11.8 Kinematics for binary reactions 222
11.9 The S matrix, the T matrix, cross-sections, and decay rates 225
Problems 232
Guide to additional recommended reading 234

12 Elementary processes of quantum electrodynamics 235
12.1 $e^+ + e^- \rightarrow \mu^+ + \mu^-$ 236
12.2 $e^- + \mu^- \rightarrow e^- + \mu^-$ 240
12.3 $e^+ + e^- \rightarrow e^+ + e^-$ 242
12.4 $e^- + e^- \rightarrow e^- + e^-$ 246
12.5 $e^- + \gamma \rightarrow e^- + \gamma$ and $e^+ + e^- \rightarrow 2\gamma$ 250
Problems 253
Guide to additional recommended reading 255

13 Introduction to regularization, renormalization, and radiative corrections 257
13.1 The electron vertex correction 260
13.2 The electron self-energy 265
13.3 The photon self-energy 268
13.4 The renormalized electron charge 272
Problems 275
Guide to additional recommended reading 276

Appendix A A brief survey of group theory and its notation 278
A.1 Groups 278
A.2 Lie groups 279
A.3 Lie algebras 281
A.4 Lie algebras of Lie groups 282
A.5 The angular momentum algebra 283

Bibliography 286
Index 288
Preface

This book is based on my lectures in the course ‘Relativistic Quantum Physics’ at the Royal Institute of Technology (KTH) in Stockholm, Sweden. These lectures have been given four times during the academic years 2006–2007, 2007–2008, 2008–2009, and 2009–2010. The main sources of inspiration for the lectures were the books A. Z. Capri, *Relativistic Quantum Mechanics and Introduction to Quantum Field Theory*, World Scientific (2002) and M. E. Peskin and D. V. Schroeder, *An Introduction to Quantum Field Theory*, Addison-Wesley (1995), and indeed, this book serves as a textbook for relativistic quantum mechanics with continuation to basic quantum field theory. The book is mainly intended for final-year undergraduate students in physics or first-year graduate students in physics and/or theoretical physics, who want to learn relativistic quantum mechanics, the basics of quantum field theory, and the techniques of calculating cross-sections for elementary reactions in quantum electrodynamics. Thus, the book should be suitable for any course on relativistic quantum mechanics as well as it might be suitable for a beginners’ course on quantum field theory. In summary, the book is a self-contained technical treatment on relativistic quantum mechanics, introductory quantum field theory, and the step in between, i.e. it should fill the gap between advanced quantum mechanics and quantum field theory, which I have called relativistic quantum physics. It contains a thorough and detailed mathematical treatment of the subject with smaller exercises throughout the whole text and larger problems at the end of most chapters.

I am deeply grateful to Johannes Bergström, Jonas de Woul, and Dr Jens Wirstam for careful proof-reading of earlier versions of the manuscript of this book and for useful comments, discussions, and suggestions how to improve the book. I am indebted to my former Ph.D. supervisor Professor emeritus Håkan Snellman for teaching me that physics is a descriptive science, which indeed does not explain anything. I would also like to thank my two friends Björn Sjödin and Jens Wirstam, who left science for ‘industry’, but never lost interest in it, and with whom I
Preface

obtained many inspiring ideas how to develop this book further. Discussions with Dr Mattias Blennow, Dr Tomas Häggren, Henrik Melbëus, and Dr He Zhang have been helpful in the process of development. In addition, I would like to thank Professor Mats Wallin, who suggested to me to include the topic ‘graphene’ in this book.

The author gratefully acknowledges financial support from the degree program ‘Engineering Physics’ (especially, Professor Leif Kari) at KTH for the development of this book.

Finally, last but not least, I would like to thank my family and friends for always being there for me. This applies particularly to my wife Linda, but also to my mother Inga-Lill and my sister Therése.