Cambridge University Press

978-0-521-76722-4 - Aspect-Oriented, Model-Driven Software Product Lines: The AMPLE Way
Edited by Awais Rashid, Jean-Claude Royer and Andreas Rummler

Excerpt

More information

1

Introduction

AWAIS RASHID, JEAN-CLAUDE ROYER AND ANDREAS RUMMLER

He sat, in defiance of municipal orders, astride the gun Zam-Zammah
on her brick platform opposite the old Ajaib- Gher — the Wonder House,
as the natives call the Lahore Museum. Who hold Zam-Zammabh, that
“fire-breathing dragon’, hold the Punjab.

(Rudyard Kipling, Kim)

As the size and complexity of software systems grows, so does the need for
effective modularity, abstraction and composition mechanisms to improve the reuse
of software development assets during software systems engineering. This need
for reusability is dictated by pressures to minimise costs and shorten the time
to market. However, such reusability is only possible if these assets are variable
enough to be usable in different products. Variability support has thus become an
important attribute of modern software development practices. This is reflected by
the increasing interest in mechanisms such as software product lines (Clements
& Northrop, 2001) and generative programming (Czarnecki & Eisenecker 2000).
Such mechanisms allow the automation of software development as opposed to the
creation of custom ‘one of a kind’ software from scratch. By utilising variability
techniques, highly reusable code libraries and components can be created, thus
cutting costs and reducing the time to market.

A software product line is a set of software-intensive systems sharing a common,
managed set of features that satisfy the specific needs of a particular market segment
or mission and that are developed from a common set of core assets in a prescribed
way. Core assets are produced and reused in a number of products that form a
family. These core assets may be documents, models, etc., comprising product
portfolios, requirements, project plans, architecture, design models and, of course,
software components.

Thus, software product lines provide a systematic means to manage variability
in a suite of products. Their potential benefits involve identification of variants

© in this web service Cambridge University Press www.cambridge.org

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521767224

Cambridge University Press

978-0-521-76722-4 - Aspect-Oriented, Model-Driven Software Product Lines: The AMPLE Way
Edited by Awais Rashid, Jean-Claude Royer and Andreas Rummler

Excerpt

More information

4 Introduction

and expression of interrelationships between variants as well as their relation-
ships with the core assets. Furthermore, the product line design allows for specific
variations while leaving room for future extensions. This requires underpinning
implementation technologies that support flexible yet modular implementations.
Last, but not least, a product line approach supports the management of evolution
and consistency in multi-product systems.

One view of product line development is as an up-front design and engineering
investment that pays-off at some point after enough applications within the family
are generated — the so-called proactive product line engineering (Clements &
Krueger, 2002). An alternative view of a product line is to see it as an accumulation
of investment in addition to an up-front investment. The more similar applications
we build for a given domain, the more we tend to reuse the previously developed
behaviour in the new applications. This view calls for support for generalisation of
reusable assets out of concrete products via systematic refactoring — the so-called
reactive or extractive product line engineering (Clements & Krueger, 2002).

Turning an up-front and/or accumulation of investment into a really profitable
product line is not only a matter of discipline and architectural refactoring but also
a matter of development technology support for doing so. There are three major
barriers that stand in the way of reaping the full benefits of software product lines
as noted above. First, there is the challenge of scale: a large number of variants may
existin a product line context and the number of interrelationships and dependencies
can rise exponentially especially as one attempts to understand the interactions
amongst variants as they are refined from requirements to implementation. Second,
variations tend to be systemic by nature in that they affect the whole architecture
of the software product line. Finally, software product lines often serve different
business contexts, each having their own intricacies and complexities.

The AMPLE approach (short for aspect-oriented, model-driven, product line
engineering), which is the focus of this book, aims to tackle the three major barriers
described above by combining advances in aspect-oriented software development
and model-driven engineering. The approach has been developed by a consortium
of six leading research centres in the areas of software product lines, aspect-
oriented software development and model-driven engineering, and three industrial
organisations working with or seeking to deploy product line solutions. The efforts
were co-funded by the European Commission FP6 funding programme over the
period 2006-2009.

In this chapter, we first provide an overview of software product lines, model-
driven engineering and aspect-oriented software development. This is followed by
an overview of the AMPLE approach and its tool chain. The subsequent chapters
in the book provide detailed discussions of the various facets of the approach and
the tools.

© in this web service Cambridge University Press www.cambridge.org

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521767224

Cambridge University Press

978-0-521-76722-4 - Aspect-Oriented, Model-Driven Software Product Lines: The AMPLE Way
Edited by Awais Rashid, Jean-Claude Royer and Andreas Rummler

Excerpt

More information

1.1 Software product line engineering 5

1.1 Software product line engineering

Product line engineering (PLE) is a common principle in engineering disciplines
other than software engineering. It has its origins in the need for individualised
products instead of standardised products for the mass market.

Examples of product lines are manifold and can be found in different domains.
A very good and illustrative one is the market for mobile phones. Most vendors
of mobile phones cover a wide range of customer demands, ranging from sim-
ple entry models to feature-rich models targeted at the business-user segment of
the market. In the context of PLE each model is called a product. Products are
distinguished from each other by certain characteristics, but also share common
characteristics. From an engineering perspective and also from an economic point
of view it doesn’t make sense to develop each product separately. This would
mean setting up 20 different development teams for the creation of 20 differ-
ent mobile phone models, which would prevent the utilisation of any synergies
during the development. Instead, it is desirable to create a set of common com-
ponents that can be reused during the development of all models. In the context
of PLE such a set of components (no matter how tightly integrated they are) is
called a platform. A platform consists of a set of core artefacts on top of which
all products are built. The platform also contains base technologies which allow
the derivation of products. The derivation of products describes the process of
their creation. The mechanisms used in the derivation process are ideally powerful
enough to execute this process automatically. However, in reality this process is only
semi-automatic.

The products are differentiable from each other by features. A feature is a
characteristic of a product that is visible to the end-user in some way. To pick the
example of mobile phones, features may change both the hardware and software
utilised by a particular model. Examples of features are the availability of a touch
screen or a keyboard to enter telephone numbers, a built-in digital camera, a music
player, a GPS or a radio receiver, or simply the possibility to connect to GSM
and/or UMTS networks. Features may have relations among each other; or they
may be independent from each other and built into a system in parallel (e.g. a
camera and a music player). They may also exclude each other (e.g. a touch screen
and a keyboard) or they may require the presence of each other (e.g. a firmware
module for controlling a radio receiver requiring the presence of the receiver
itself).

Obviously the concept of features is bound to (potentially physical) objects
that can be reused during the development of products. Reuse plays an important
role in PLE and is one of the key drivers in the engineering process. Reuse also
implies that all artefacts, which serve as building blocks for products, need to

© in this web service Cambridge University Press www.cambridge.org

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521767224

Cambridge University Press

978-0-521-76722-4 - Aspect-Oriented, Model-Driven Software Product Lines: The AMPLE Way
Edited by Awais Rashid, Jean-Claude Royer and Andreas Rummler

Excerpt

More information

6 Introduction

be managed somehow. We also introduced the concept of a platform. A platform
combines and manages all available artefacts, which serve as the technical basis
on top of which all products are built. In systems based on a layered architec-
ture, a platform usually denotes one certain layer, which provides abstractions
for a higher layer. However, in PLE a platform is more than this. In addition
to technical building blocks (e.g. a digital camera module or a GPS receiver)
it also captures artefacts from all development stages (including non-physical
ones), ranging from requirements over architectural blueprints to test cases. It
also includes supplemental elements such as documentation or even development
methodologies. Overall, a platform in PLE comprises all elements that are common
to all possible products and that are needed to create single products out of the
product line.

1.1.1 Commonality and variability

Having established the concepts of a platform from which single products are
derived, it is now possible to take a closer look at the relationship between the
platform and the derived products. When examining products it becomes obvious
that these products share certain characteristics while they differ in others. In the
context of PLE they have properties in common, while they vary in others. These are
key concepts in PLE; consequently PLE is basically about managing commonality
and variability. Both concepts are handled in the platform itself. Common features
are reused on an as-is basis in products, whilst variable elements need to be
configured first and are used upon request only. Configuration in this context
means choosing between several of options. In order to cope with variability in a
systematic way, the concepts of variation points and variants have been developed.
A variation point is a property exposed by the platform that can be altered in some
way (i.e. set to a certain value). A variant is formed when a variation point is bound
to a certain value. An example in the area of mobile phones is the digital camera
module. The presence of such a module can be a variation point, which may offer
a certain set of possible values, i.e. modules with 2, 3 and 5 megapixels. Choosing
one particular module (i.e. the 3 megapixel model) resolves the variability and
forms a variant.

To better illustrate these concepts, Figure 1.1 depicts the basic concepts of PLE
graphically.

1.1.2 Benefits of product line engineering

The motivation behind PLE is manifold. First, of course, is the reduction in devel-
opment costs. This reduction does not come per se, as there is a substantial up-front

© in this web service Cambridge University Press www.cambridge.org

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521767224

Cambridge University Press

978-0-521-76722-4 - Aspect-Oriented, Model-Driven Software Product Lines: The AMPLE Way
Edited by Awais Rashid, Jean-Claude Royer and Andreas Rummler

Excerpt

More information

1.1 Software product line engineering 7
Asset common to both products Asset variant 1 Asset variant 2

Product 1 built from 2 assets Product 2 built from 2 assets

Derived f latf
erived from platform Derived from platform

Platform with core assets T

Core asset with a variation point

Figure 1.1 Basic concepts of product line engineering.

investment to be made. In single-system engineering the total costs for » individual
systems is equal to n times the costs for each single system. In contrast, in PLE there
are additional costs for creating the platform. There is also a significant overhead
in creating the reusable artefacts that form the PL platform. However, deriving
single products results in significantly lower costs as the major development effort
has already been done before and does not need to be repeated. It is hard to give
a general statement on the break-even point, where setting up a product line pays
off. However, Weiss and Lai (1999) have shown that this point often lies between
three to four systems.

Another benefit that is closely related to the one discussed above is the reduc-
tion of the time-to-market. Ideally a product can be created by only using existing
artefacts from the platform — no product-specific development needs to be under-
taken. While this is an ideal case, it is nevertheless not unrealistic. In general, the
actual product creation (derivation) process can be semi-automated or even fully
automated. As a large amount of development work does not need to be carried out,

© in this web service Cambridge University Press www.cambridge.org

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521767224

Cambridge University Press

978-0-521-76722-4 - Aspect-Oriented, Model-Driven Software Product Lines: The AMPLE Way
Edited by Awais Rashid, Jean-Claude Royer and Andreas Rummler

Excerpt

More information

8 Introduction

the time to create a ready-to-ship product can be drastically reduced. The actual
time required depends on the product derivation infrastructure and the amount of
dedicated functionality (not available as platform asset(s)) that needs to included
in the product. In addition, as the product derivation infrastructure exists and its
characteristics are known, the estimation of costs when creating a new product can
be much more accurate.

Another aspect which is also a major benefit for the application of product lines
is the increase in product quality and the reduction of maintenance costs. Artefacts
provided by the platform are used in different products in (potentially) different
environments. This contributes to the process of stabilising the functioning of assets
and increases the chance of detecting errors. In return, flaws can be fixed at a single
point and the resulting changes can be forwarded to all products containing the
affected asset.

1.1.3 Domain and application engineering

Following the basics outlined above, it becomes quite obvious that there is no
straightforward sequential development process in PLE. Instead, there are two dif-
ferent processes that are, however, interrelated. Both the platform and the derived
products need to be created. The process of establishing the platform is called
domain engineering (DE), while the creation of products is referred to as applica-
tion engineering (AE).

Domain engineering encompasses all activities in constructing the platform. In
this process commonality and variability is defined and components capable of
handling the variability are created. In addition, tools are prepared that can be
used to resolve and bind the variability when it comes to engineering the derived
products. As outlined above the platform not only consists of reusable components,
it also consists of tools/methods for using and managing those components. The
creation of all of those elements is part of DE. As a bottom line, in DE the product
line owner defines what parts are variable and how this variability is exposed to
the user (of the products that are derived, i.e. the product manager responsible
for a single product). Therefore, DE defines the scope in which products can be
constructed.

In application engineering actual products are derived by using the elements
created in DE. This incorporates the application of methods and/or tools the
platform provides, the reuse of existing components and the binding of variabil-
ity according to specific application requirements (resulting in component vari-
ants). An important aspect that complements these activities is the creation of
dedicated application-specific components used in only one product. This step
may not be necessary in some cases; however, it is much more likely that a

© in this web service Cambridge University Press www.cambridge.org

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521767224

Cambridge University Press

978-0-521-76722-4 - Aspect-Oriented, Model-Driven Software Product Lines: The AMPLE Way
Edited by Awais Rashid, Jean-Claude Royer and Andreas Rummler

Excerpt

More information

1.1 Software product line engineering 9

product needs to be complemented with dedicated functionality, which is also part
of AE and may be quite expensive depending on the complexity of the required
functionality.

Both DE and AE processes run in parallel — completely decoupled development
processes for both are impossible. Instead, both influence each other. The platform
must be designed in such a way that it is profoundly beneficial for AE. Most of the
foreseeable features should be provided by components of the platform in order to
raise the level of reuse to the highest possible degree (which results in minimised
development costs). On the other hand, a newly requested feature for one product
might also be introduced into other products, which would make it a candidate
for incorporation into the platform. A close collaboration between platform and
product owners is necessary to prevent a drift in functionality between platform and
products. Over time, this would result in a platform that doesn’t serve its purpose
of being a basis for products and creates an unnecessary cost overhead when the
same functionality is implemented many times in different products. Therefore, the
design of the platform must already be prepared in a way that it supports evolution
over time and already captures the possible directions of future functionality. For
this reason careful platform design is key to the successful application of PLE
techniques.

1.1.4 Product line engineering for software

The introduction to product line engineering above was not given with a spe-
cialised focus on software engineering. But it is obvious that although there is
no reason not to apply PLE concepts to the development of software, the pro-
cess of creating software is different in some aspects from other engineering dis-
ciplines. Therefore, the following question needs to be discussed: what issues
need to be solved when setting up a software product line engineering (SPLE)
process?

The processes of domain engineering and application engineering are similar to
each other and also similar to normal processes in software engineering. They go
through all stages ranging from requirements engineering via design and imple-
mentation to testing, maintenance and evolution. The biggest difference is that
in DE and AE different artefacts are created. While DE concentrates on creating
reusable elements and templates or stubs that can be used later in AE, AE itself
uses and completes these elements and templates to create actual products. These
elements encompass all kinds known from software engineering such as require-
ments documents, documentation, architectural models, source code, test cases,
and so on. Most elements are in some way ‘componentised’ in order to ease the
task of composing and configuring them in AE.

© in this web service Cambridge University Press www.cambridge.org

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521767224

Cambridge University Press

978-0-521-76722-4 - Aspect-Oriented, Model-Driven Software Product Lines: The AMPLE Way
Edited by Awais Rashid, Jean-Claude Royer and Andreas Rummler

Excerpt

More information

10 Introduction

Mobile phone

Dialing unit

O

i

Photo sensor Touchscreen

Keyboard

lMandatoryl Optional /‘\Alternative/O\Or

Figure 1.2 Example of a feature diagram for a product line of mobile phones.

| Fixed lens | | Zoom lens |

Collecting components in some repository in the hope that they will be reused
in an SPL is not sufficient. To ease the task of product derivation, which should
be automated as far as possible, it is necessary to describe what components
are available, what variable characteristics they have and how this variability is
resolved. The way these descriptions are made and the way they are used and
evaluated is the biggest difference between PLE for software engineering and PLE
for other domains. An introduction to modelling and models is given in the next
section; however, we anticipate a little at this point and give an introduction to very
basic variability description mechanisms employed in SPLE.

We have already introduced the notion of a feature. However, we did not discuss
the possible interrelations among features. We defined a feature as a characteristic of
a system that is somehow visible to the user. Systems usually contain many different
features that can be grouped together. By grouping features the capabilities of the
system can be described in one (possibly large) tree, called a feature tree. Single
features in this tree might have different attributes and relations. Some features may
be mandatory in a product, some may be optional. Some may require other features
to be included as well (dependency) or may interfere with the inclusion. Even
alternatives to select from are possible. The grouping of all features including their
interrelations is captured in a so-called feature model. These feature models were
first introduced in Kang et al. (1990) and are now a widespread way of expressing
the structure of a product line, and are used as a first-order input during product
derivation. Feature models are often visualised in feature diagrams. An example of
such a diagram is given in Figure 1.2.

© in this web service Cambridge University Press www.cambridge.org

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521767224

