Physics of the Atmosphere and Climate

Murry Salby's new book provides an integrated treatment of the processes controlling the Earth-atmosphere system developed from first principles through a balance of theory and applications. This book builds on Salby's previous book *Fundamentals of Atmospheric Physics*. The scope has been expanded to include climate, while streamlining the presentation for undergraduates in science, mathematics, and engineering. Advanced material, suitable for graduate students and researchers, has been retained but distinguished from the basic development. The book offers a conceptual yet quantitative understanding of the controlling influences integrated through theory and major applications. It leads readers through a methodical development of the diverse physical processes that shape weather, global energetics, and climate. End-of-chapter problems of varying difficulty develop student knowledge and its quantitative application, supported by answers and detailed solutions online for instructors.

MURRY SALBY is Chair of Climate Science at Macquarie University, Sydney, Australia. He was previously a Professor at the University of Colorado, where he served as Director of the Center for Atmospheric Theory and Analysis. Previously, he was a researcher at the U.S. National Center for Atmospheric Research and at Princeton University. Professor Salby has authored more than 100 scientific articles in major international journals, as well as the textbook *Fundamentals of Atmospheric Physics* (1996). His research focuses on changes of the atmospheric circulation in relation to global structure, energetics, and climate. Involving large-scale computer simulation and satellite data, Salby's research has provided insight into a wide range of phenomena in the Earth-atmosphere system.

Praise for Physics of the Atmosphere and Climate

"Salby's book is a graduate textbook on Earth's atmosphere and climate that is well balanced between the physics of the constituent materials and fluid dynamics. I recommend it as a foundation for anyone who wants to do research on the important open questions about aerosols, radiation, biogeochemisty, and ocean-atmosphere coupling."

-Professor Jim McWilliams, University of California, Los Angeles

"Salby's book provides an exhaustive survey of the atmospheric and climate sciences. The topics are well motivated with thorough discussion and are supported with excellent figures. The book is an essential reference for researchers and graduate and advanced undergraduate students who wish to have a rigorous source for a wide range of fundamental atmospheric science topics. Each chapter ends with an excellent selection of additional references and a challenging set of problems. Atmospheric and climate scientists will find this book to be an essential one for their libraries." *–Associate Professor Hampton N. Shirer, Pennsylvania State University*

"Murry Salby presents an informative and insightful tour through the contemporary issues in the atmospheric sciences as they relate to climate. *Physics of the Atmosphere and Climate* is a valuable resource for educators and researchers alike, serving both as a textbook for the graduate or advanced undergraduate student with a physics or mathematics background and as an excellent reference and refresher for practitioners. It is a welcome addition to the field."

-Professor Darin W. Toohey, University of Colorado at Boulder

Salby's earlier book is a classic. As a textbook it is unequaled in breadth, depth, and lucidity. It is the single volume that I recommend to all of my students in atmospheric science. This new version improves over the previous version, if that is possible, in three aspects: beautiful illustrations of global processes (e.g. hydrological cycle) from newly available satellite data, new topics of current interest (e.g. interannual changes in the stratosphere and the oceans), and a new chapter on the influence of the ocean on the atmosphere. These changes make the book more useful as a starting point for studying climate change."

-Professor Yuk Yung, California Institute of Technology

PHYSICS OF THE ATMOSPHERE AND CLIMATE

M U R R Y L. S A L B Y Macquarie University

C in this web service Cambridge University Press

> C A M B R I D G E U N I V E R S I T Y P R E S S Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Tokyo, Mexico City

Cambridge University Press 32 Avenue of the Americas, New York, NY 10013-2473, USA

www.cambridge.org Information on this title: www.cambridge.org/9780521767187

© Murry L. Salby 2012

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2012

Printed in the United States of America

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication data Salby, Murry L. Physics of the atmosphere and climate / Murry L. Salby. - 2nd ed. p. cm. Revised ed. of: Fundamentals of atmospheric physics. 1996. Includes bibliographical references and index. ISBN 978-0-521-76718-7 (hardback) 1. Atmospheric physics. I. Salby, Murry L. Fundamentals of atmospheric physics. II. Title. QC861.3.S257 2011 551.5-dc23 2011033950

ISBN 978-0-521-76718-7 Hardback

Additional resources for this publication at www.cambridge.org/salby

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate.

To Alon

Strive for the Best

Contents

Preface		page xv	
Pre	Prelude		xix
1	The	Earth-atmosphere system	1
		Introduction	1
		1.1.1 Descriptions of atmospheric behavior	1
		1.1.2 Mechanisms influencing atmospheric behavior	2
	1.2	Composition and structure	3
		1.2.1 Description of air	
		1.2.2 Stratification of mass	7
		1.2.3 Thermal and dynamical structure	14
		1.2.4 Trace constituents	20
		1.2.5 Cloud	41
		Radiative equilibrium of the Earth	46
	1.4	The global energy budget	48
		1.4.1 Global-mean energy balance	48
		1.4.2 Horizontal distribution of radiative transfer	50
		The general circulation	53
	1.6	Historical perspective: Global-mean temperature	56
		1.6.1 The instrumental record	57
		1.6.2 Proxy records	65
		Suggested references	71
		Problems	71
2	The	rmodynamics of gases	74
	2.1	Thermodynamic concepts	74
		2.1.1 Thermodynamic properties	75
		2.1.2 Expansion work	75
		2.1.3 Heat transfer	77
		2.1.4 State variables and thermodynamic processes	77

viii	li	Contents
	 2.2 The First Law 2.2.1 Internal energy 2.2.2 Diabatic changes of state 	81 81 82
	 2.3 Heat capacity 2.4 Adiabatic processes 2.4.1 Potential temperature 2.4.2 Thermodynamic behavior according 	
	motion 2.5 Diabatic processes 2.5.1 Polytropic processes Suggested references Problems	90 91 92 93 93
3	 The Second Law and its implications 3.1 Natural and reversible processes 3.1.1 The Carnot cycle 3.2 Entropy and the Second Law 3.3 Restricted forms of the Second Law 3.4 The fundamental relations 3.4.1 The Maxwell Relations 3.4.2 Noncompensated heat transfer 3.5 Conditions for thermodynamic equilibities 3.6.1 Implications for vertical motion Suggested references Problems 	mperature 107
4	 Heterogeneous systems 4.1 Description of a heterogeneous system 4.2 Chemical equilibrium 4.3 Fundamental relations for a multi-com 4.4 Thermodynamic degrees of freedom 4.5 Thermodynamic characteristics of wate 4.6 Equilibrium phase transformations 4.6.1 Latent heat 4.6.2 Clausius-Clapeyron Equation Suggested references Problems 	115 ponent system 117 118
5	 Transformations of moist air 5.1 Description of moist air 5.1.1 Properties of the gas phase 5.1.2 Saturation properties 5.2 Implications for the distribution of wat 5.3 State variables of the two-component s 5.3.1 Unsaturated behavior 5.3.2 Saturated behavior 5.4 Thermodynamic behavior accompanyin 5.4.1 Condensation and the release of 	system 132 133 133 ng vertical motion 135

Col	ntent	5	ix
	55	5.4.2 The pseudo-adiabatic process 5.4.3 The Saturated Adiabatic Lapse Rate The pseudo-adiabatic chart	139 141 142
	5.5	Suggested references Problems	146 146
		Problems	140
6		rostatic equilibrium	150
		Effective gravity	150
		Geopotential coordinates Hydrostatic balance	152 153
	0.5	6.3.1 Hypsometric equation	155
		6.3.2 Meteorological Analyses	154
	6.4	Stratification	157
		6.4.1 Idealized stratification	159
	6.5	Lagrangian interpretation of stratification	161
		6.5.1 Adiabatic stratification: A paradigm of the troposphere	162
		6.5.2 Diabatic stratification: A paradigm of the	102
		stratosphere	165
		Suggested references	168
		Problems	168
7	Stat	ic stability	171
	7.1	Reaction to vertical displacement	171
	7.2	7 5	173
		7.2.1 Stability in terms of temperature	174
		7.2.2 Stability in terms of potential temperature	175 178
	73	7.2.3 Moisture dependence Implications for vertical motion	178
	7.4	•	180
	/	7.4.1 Conditional instability	181
		7.4.2 Entrainment	186
		7.4.3 Potential instability	188
		7.4.4 Modification of stability under unsaturated	
		conditions	190
		Stabilizing and destabilizing influences	191
	7.6	Turbulent dispersion 7.6.1 Convective mixing	194 194
		7.6.2 Inversions	194
		7.6.3 Life cycle of the nocturnal inversion	195
	7.7	Relationship to observed thermal structure	197
		Suggested references	200
		Problems	200
8	Radiative transfer		203
	8.1	Shortwave and longwave radiation	203
		8.1.1 Spectra of observed SW and LW radiation	204
	8.2	Description of radiative transfer	209
		8.2.1 Radiometric quantities	209

x			Contents
		8.2.2 Absorption	211
		8.2.3 Emission	212
		8.2.4 Scattering	216
		8.2.5 The Equation of Radiative Transfer	218
	8.3	-	219
		8.3.1 Interaction between radiation and molecules	219
		8.3.2 Line broadening	224
	8.4	Radiative transfer in a plane parallel atmosphere	227
		8.4.1 Transmission function	229
		8.4.2 Two-stream approximation	231
	8.5	Thermal equilibrium	234
		8.5.1 Radiative equilibrium in a gray atmosphere	234
		8.5.2 Radiative-convective equilibrium	237
		8.5.3 Radiative heating	240
		Thermal relaxation	245
	8.7	The greenhouse effect	247
		8.7.1 Feedback in the climate system	249
		8.7.2 Unchecked feedback	258
		8.7.3 Simulation of climate	260
		Suggested references	262
		Problems	262
9		osol and cloud	266
	9.1	Morphology of atmospheric aerosol	266
		9.1.1 Continental aerosol	266
		9.1.2 Marine aerosol	271
		9.1.3 Stratospheric aerosol	271
	9.2		272
		9.2.1 Droplet growth by condensation	272
		9.2.2 Droplet growth by collision	281
	0.0	9.2.3 Growth of ice particles	282
	9.3	Macroscopic characteristics of cloud	284
		9.3.1 Formation and classification of cloud	284
		9.3.2 Microphysical properties of cloud9.3.3 Cloud dissipation	292 293
		9.3.4 Cumulus detrainment: Influence on the environment	
	9.4		294
	9.4	9.4.1 Scattering by molecules and particles	298
		9.4.2 Radiative transfer in a cloudy atmosphere	305
	9.5	, ,	315
	9.5	9.5.1 Involvement in the global energy budget	315
		9.5.2 Involvement in chemical processes	324
		Suggested references	324
		Problems	325
10	Δtm	nospheric motion	328
10		Description of atmospheric motion	329
		2 Kinematics of fluid motion	330
			550

Contents	xi
 10.3 The material derivative 10.4 Reynolds' transport theorem 10.5 Conservation of mass 10.6 The momentum budget 10.6.1 Cauchy's Equations of Motion 10.6.2 Momentum equations in a rotating reference 	334 334 336 337 337
frame 10.7 The first law of thermodynamics Suggested references Problems	339 341 343 343
 11 Atmospheric equations of motion 11.1 Curvilinear coordinates 11.2 Spherical coordinates 11.2.1 The traditional approximation 11.3 Special forms of motion 11.4 Prevailing balances 11.4.1 Motion-related stratification 11.4.2 Scale analysis 11.5 Thermodynamic coordinates 11.5.1 Isobaric coordinates 11.5.2 Log-pressure coordinates 11.5.3 Isentropic coordinates Suggested references Problems 	345 345 353 354 355 355 356 358 363 363 365 369 369
 12 Large-scale motion 12.1 Geostrophic equilibrium 12.1.1 Motion on an <i>f</i> plane 12.2 Vertical shear of the geostrophic wind 12.2.1 Classes of stratification 12.2.2 Thermal wind balance 12.3 Frictional geostrophic motion 12.4 Curvilinear motion 12.4.1 Inertial motion 12.4.2 Cyclostrophic motion 12.4.3 Gradient motion 12.5 Weakly divergent motion 12.5.1 Barotropic nondivergent motion 12.5.2 Vorticity budget under baroclinic stratification 12.5.3 Quasi-geostrophic motion Suggested references Problems 	371 374 376 377 379 380 382 384 385 385 385 386 386 386 386 386 387 392 395 395
 13 The planetary boundary layer 13.1 Description of turbulence 13.1.1 Reynolds decomposition 13.1.2 Turbulent diffusion 	398 399 401 403

xii	Contents
13.2 Structure of the boundary layer	404
13.2.1 The Ekman Layer	404
13.2.2 The surface layer	406
13.3 Influence of stratification	406
13.4 Ekman pumping	410
Suggested references	413
Problems	413
14 Wave propagation	416
14.1 Description of wave propagation	416
14.1.1 Surface water waves	416
14.1.2 Fourier synthesis	419
14.1.3 Limiting behavior	422
14.1.4 Wave dispersion	424
14.2 Acoustic waves	428
14.3 Buoyancy waves	429
14.3.1 Shortwave limit	435
14.3.2 Propagation of gravity waves in an in	homogeneous
medium	436
14.3.3 The WKB approximation	438
14.3.4 Method of geometric optics	439
14.4 The Lamb wave	444
14.5 Rossby waves	446
14.5.1 Barotropic nondivergent Rossby wave	es 446
14.5.2 Rossby wave propagation in three dir	
14.5.3 Planetary wave propagation in sheare	d mean flow 451
14.5.4 Transmission of planetary wave activ	
14.6 Wave absorption	457
14.7 Nonlinear considerations	459
Suggested references	466
Problems	467
15 The general circulation	470
15.1 Forms of atmospheric energy	471
15.1.1 Moist static energy	472
15.1.2 Total potential energy	473
15.1.3 Available potential energy	475
15.2 Heat transfer in a zonally symmetric circulat	ion 478
15.3 Heat transfer in a laboratory analogue	486
15.4 Quasi-permanent features	489
15.4.1 Thermal properties of the Earth's sur	
15.4.2 Surface pressure and wind systems	491
15.4.3 Tropical circulations	494
15.5 Fluctuations of the circulation	499
15.5.1 Interannual changes	500
15.5.2 Intraseasonal variations	509
Suggested references	512
Problems	512

xiii
515
515
517
517
519
520
526
531
531
533
533
536
538
541
544
546
546
551
553
556
564
564
566
567
567
568
570
571
572
574
575
576
577
581
585
589
591
596
602
615
615
617
618
619

xiv	Contents
Appendix D: Vector identities	620
Appendix E: Curvilinear coordinates	621
Appendix F: Pseudo-adiabatic chart	623
Appendix G: Acronyms	625
Answers to selected problems	627
References	633
Index	647

Preface

Global measurements from space, coupled with large-scale computer models, have widened the perspective of atmospheric science along with its subdiscipline, the study of climate. Supporting those tools are proxy records of previous climate upon which rest interpretations of the current state of the Earth-atmosphere system. While opening new avenues of investigation, these modern tools have introduced increasingly complex questions. Many concern the tools themselves. Uncertainties surround the interpretation of observations, especially proxy records of previous climate, how key physical processes are represented in Global Climate Models (GCMs), and discrepancies between those models. These uncertainties make an understanding of the controlling physical processes and limitations that surround their description essential for drawing reliable insight into the Earth-atmosphere system.

Emerging simultaneously with technological advances has been growing concern over the role of humans in global climate. Buttressed by wide-ranging claims of environmental consequences, such concern has been pushed into the limelight of major national and international policy. The popular ascent of climate research has not been without criticism. Notable are concerns over rigor and critical analysis, whereby (i) proxies of previous climate, relied upon in interpretations of current climate, are often remote and ambiguous and (ii) insight into underlying physical mechanisms has been supplanted by models which, although increasingly complex, remain, in many respects, primitive and poorly understood. Despite technological advances in observing the Earth-atmosphere system and in computing power, strides in predicting its evolution reliably – on climatic time scales and with regional detail – have been limited. The pace of progress reflects the interdisciplinary demands of the subject. Reliable simulation, adequate to reproduce the observed record of climate variation, requires a grasp of mechanisms from different disciplines and of how those mechanisms are interwoven in the Earth-atmosphere system.

Historically, students of the atmosphere and climate have had proficiency in one of the physical disciplines that underpin the subject, but not in the others. Under the fashionable umbrella of climate science, many today do not have proficiency in even xvi

Preface

one. What is today labeled climate science includes everything from archeology of the Earth to superficial statistics and a spate of social issues. Yet, many who embrace the label have little more than a veneer of insight into the physical processes that actually control the Earth-atmosphere system, let alone what is necessary to simulate its evolution reliably. Without such insight and its application to resolve major uncertainties, genuine progress is unlikely.

The atmosphere is the heart of the climate system, driven through interaction with the sun, continents, and ocean. It is the one component that is comprehensively observed. For this reason, the atmosphere is the central feature against which climate simulations must ultimately be validated.

This book builds on a forerunner, *Fundamentals of Atmospheric Physics*. It has been expanded to include climate, while streamlining the presentation for undergraduates in science, mathematics, and engineering. Advanced material, suitable as a resource for graduate students and researchers, has been retained (distinguished by shading). The treatment focuses upon physical concepts, which are developed from first principles. It integrates five major themes:

- 1. Atmospheric Thermodynamics;
- 2. Hydrostatic Equilibrium and Stability;
- 3. Radiation, Cloud, and Aerosol;
- 4. Atmospheric Dynamics and the General Circulation;
- 5. Interaction with the Ocean and Stratosphere.

Cornerstones of modern research, these themes are developed in a balance of theory and applications. Each is illustrated with manifestations on an individual day, the same day used to illustrate other themes. In this fashion, the Earth-atmosphere system is dissected in contemporaneous properties, revealing interactions among them. Supporting the development are detailed solutions to selected problems.

Chapter 1 presents an overview of the Earth-atmosphere system, describing its composition, structure, and energetics. It culminates in a discussion of global mean temperature, its relationship to atmospheric composition, and issues surrounding uncertainties in instrumental and proxy records of climate. Chapters 2-5 are devoted to atmospheric thermodynamics. Developed from a Lagrangian perspective, the discussion concentrates on heterogeneous systems that figure in considerations of cloud and its interaction with radiation, as well as the role of water vapor in the global energy budget. Hydrostatic equilibrium and stability are treated in Chapters 6 and 7, which develop their roles in convection and its influence on thermal and humidity structure. Chapters 8 and 9 focus on atmospheric radiation, cloud, and aerosol. After developing the laws governing radiative transfer, the presentation moves to the energetics of radiative and radiative-convective equilibrium. It then considers climate feedback mechanisms, which are discussed in relation to major contributors to the greenhouse effect, and their simulation in GCMs. Chapters 10-16 are devoted to atmospheric dynamics and the general circulation. The perspective is then transformed, via Reynolds' transport theorem, to the Eulerian description of behavior. Large-scale motion is first treated in terms of geostrophic and hydrostatic equilibrium and then extended to vorticity dynamics and quasi-geostrophic motion. The general circulation is motivated by a zonally symmetric model of heat transfer, setting the stage for baroclinic instability. Supporting it is a treatment of thermal properties of the Earth's surface, persistent

Preface

features of the circulation, and interannual fluctuations that comprise climate variablity. The presentation then turns in Chapter 17 to the ocean, its structure, dynamics, and how it influences the atmosphere. The book closes with a treatment of the stratosphere, issues surrounding ozone, and interactions with the troposphere.

This book has benefited from interaction with numerous colleagues and students. In addition to those received earlier, contributions and feedback were generously provided by W. Bourke, J. Frederiksen, R. Madden, E. Titova, D. Toohey, and J. Wu. Figures were skillfully prepared by J. Davis and D. Oliver. Lastly, I am grateful for the understanding and encouragement of my son, without which this book would not have been completed.

Murry L. Salby

xvii

Prelude

The most fruitful areas for growth of the sciences are those between established fields. Science has been increasingly the task of specialists, in fields which show a tendency to grow progressively narrower. Important work is delayed by the unavailability in one field of results that may have already become classical in the next field. It is these boundary regions of science that offer the richest opportunities to the qualified investigator.

Norbert Wiener