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Introduction

In 1952 Pines and Bohm discussed a quantized bulk plasma oscillation of electrons
in a metallic solid to explain the energy losses of fast electrons passing through
metal foils [1]. They called this excitation a “plasmon.” Today these excitations
are often called “bulk plasmons” or “volume plasmons” to distinguish them from
the topic of this book, namely surface plasmons. Although surface electromagnetic
waves were first discussed by Zenneck and Sommerfeld [2, 3], Ritchie was the first
person to use the term “surface plasmon” (SP) when in 1957 he extended the work
of Pines and Bohm to include the interaction of the plasma oscillations with the
surfaces of metal foils [4].

SPs are elementary excitations of solids that go by a variety of names in the
technical literature. For simplicity in this book we shall always refer to them as
SPs. However, the reader should be aware that the terms “surface plasmon polari-
ton” (SPP) or alternately “plasmon surface polariton” (PSP) are used nearly as
frequently as “surface plasmon” and have the advantage of emphasizing the con-
nection of the electronic excitation in the solid to its associated electromagnetic
field. SPs are also called “surface plasma waves” (SPWs), “surface plasma oscil-
lations” (SPOs) and “surface electromagnetic waves” (SEWs) in the literature,
and as in most other technical fields, the acronyms are used ubiquitously. Other
terms related to SPs which we will discuss in the course of this book include
“surface plasmon resonance” (SPR), “localized surface plasmons” (LSPs), “long-
range surface plasmons” (LRSPs) and of course “short-range surface plasmons”
(SRSPs).

There are a variety of simple definitions in the literature for SPs. Many of these
are inadequate or incomplete. The “on” suffix emphasizes the fact that SPs have
particle-like properties including specific energies and (for propagating modes)
momenta, and strictly speaking should be considered in the context of quantum
mechanics. In this spirit, one might define a SP as a quantized excitation at the
interface between a material with a negative permittivity and free charge carriers
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2 Introduction

(usually a metal) and a material with a positive permittivity which involves a
collective oscillation of surface charge and behaves like a particle with a discrete
energy and, in the case of propagating SPs, momentum. We will find, however, that
most of the important properties of SPs can be satisfactorily described in a classical
electromagnetic model, which is all that we will employ in this book. A SP may be
defined classically as a fundamental electromagnetic mode of an interface between
a material with a negative permittivity and a material with a positive permittiv-
ity having a well-defined frequency and which involves electronic surface-charge
oscillation. It is, of course, relevant to ask whether or not a classical description
of SPs is acceptable. Bohren and Huffman address this question for nanoparticles
directly [5]. They state,

“Surface modes in small particles are adequately and economically described in their
essentials by simple classical theories. Even, however, in the classical description, quan-
tum mechanics is lurking unobtrusively in the background; but it has all been rolled up
into a handy, ready-to-use form: the dielectric function, which contains all the required
information about the collective as well as the individual particle excitations. The effect
of a boundary, which is, after all, a macroscopic concept, is taken care of by classical
electrodynamics.”

This statement can be extended to all of the systems we are considering, not
just small particles. If the objects supporting SPs are large enough that they can be
described by a dielectric function (permittivity), then the classical approach should
generally be adequate. This will be the case if the mean free path of the conduc-
tion electrons is shorter than the characteristic dimensions of the objects in the SP
system. In practice it is found that the bulk dielectric constant accurately describes
objects with dimensions down to ∼10 nm, and that a size-dependent dielectric con-
stant can be employed for objects with dimensions down to about 1–2 nm [6–8].
For a detailed discussion about size effects of the dielectric function for small metal
clusters, see Refs. [9] and [10]. As discussed in the Preface, the equations in this
text are derived from Maxwell’s equations as expressed in the SI system of units.

This text is based on Mathematica. Mathematica was not simply used as
a word processor for formatting mathematical equations, but was also used
to generate numerous figures within the text. The Mathematica notebooks,
which are included in the online supplementary materials at the web site
www.cambridge.org/9780521767170, contain all of the Mathematica code, color
figures and some additional text. The notebooks can be used to regenerate many
of the figures. Moreover, the reader may easily modify parameters in the Mathe-
matica notebook code and recompute the figure for perhaps a different wavelength
range or different material, etc. In chapters that discuss material properties, the
refractive indices for a wide variety of plasmonic, noble and transition metals are
available for calculations in addition to those materials which are specifically used
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in the figures. Some examples of the algorithms that are included in the Mathe-
matica notebooks are a simple theory of the interaction of light with cylindrical
nanowires and nanotubes in Chapter 8, Mie theory for calculations with spherical
nanoparticles and nanoshells in Chapter 9, and the theory of Chandezon for vector
diffraction of light from gratings in Chapter 10. In general, the reader should open
the Mathematica notebook for the chapter of interest (it is, of course, necessary
to purchase and install Mathematica first) and at the very beginning of each note-
book there is a section labelled “Code.” The experienced Mathematica user knows
to double click on the downward arrow of the rightmost bracket of this section in
order to expand it. The first paragraph in the Code section describes the steps that
the Mathematica user should employ to reproduce a figure in the text. The reader
is strongly encouraged to take advantage of these Mathematica features to gain
the full benefit of the text! The online supplementary materials also include a pdf
version of the color figures and a description of the Chandezon vector diffraction
theory.
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Electromagnetics of planar surface waves

2.1 Introduction

This chapter presents the electromagnetic theory that describes the main character-
istics of surface electromagnetic modes in general and surface plasmons (SPs) in
particular that propagate along single- and double-interface planar guiding struc-
tures. We begin with an introduction to electromagnetic theory that discusses
Maxwell’s equations, the constitutive equations and the boundary conditions. Next,
Maxwell’s equations in terms of time-harmonic fields, electric and magnetic fields
in terms of each other, and the resultant wave equations are presented. Group
velocity and phase velocity, surface charge at a metal/dielectric interface and the
perfect electric conductor conclude this introduction. Following this introduction
are sections that describe the properties of electromagnetic modes that single- and
double-interface planar guiding structures can support in terms of the media they
are composed of. These media will be presented in terms of their permittivity and
permeability whose real part can be either positive or negative. A new formalism
will be developed to treat such media in the context of natural materials such as
metals and dielectrics and in terms of a collection of subwavelength nanostructures
dubbed metamaterials. Finally, the power flow along and across the guiding struc-
tures is presented, and the reflectivity from the base of a coupling prism and the
accompanied Goos–Hänchen shift are treated. The material covered in this chapter
draws heavily from Refs. [1] to [3] for the theory of electromagnetic fields and
from Refs. [4] and [5] for the theory of optical waveguides. The theory of metama-
terials and their applications as guiding media makes use of Refs. [6] to [12] where
citations to a vast body of literature can be found. The concept of Poynting vec-
tors and energy flow in general and in metamaterials in particular is adapted from
Refs. [13] to [15].
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2.2 Topics in electromagnetic theory 5

2.2 Topics in electromagnetic theory

2.2.1 Maxwell’s equations

The electromagnetic fields in empty space are given in terms of two vectors, E and
B, called the electric vector and magnetic induction, respectively. The presence
of matter in the space occupied by these vector fields requires three more vec-
tors, D, H and j , called electric displacement, magnetic vector and free electric
current density, respectively. Each one of these five vectors, whose components
are described in terms of the Cartesian unit vectors x̂, ŷ and ẑ, can be complex,
which means that they have a phase relative to each other as well as to the com-
ponents of the other vectors. The space- and time-dependence of these five vectors
are prescribed by Maxwell’s vector and scalar equations. The two vector equa-
tions, in terms of the curl (∇×) operator and the partial time derivative (∂/∂t), are
given by

∇ × E + ∂B
∂t

= 0, (2.1)

and

∇ × H − ∂D
∂t

= j . (2.2)

The two scalar equations are given in terms of the divergence (∇·) operator by

∇ · D = ρ (2.3)

and

∇ · B = 0, (2.4)

where ρ denotes free electric charge density.

2.2.2 Constitutive equations

The presence of matter modifies the electromagnetic fields that are described by
three constitutive (material) equations. For linear media, these equations take the
form

D = ε0 εr E, (2.5)

B = µ0 µr H, (2.6)

and

j = σ E. (2.7)

Here, εr , µr are the relative (electric) permittivity, relative (magnetic) permeability
and specific conductivity, respectively, which are in general tensors: ε0 and µ0 are
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6 Electromagnetics of planar surface waves

the permittivity and permeability of free space, and σ is the specific conductivity.
Except for ε0, whenever ε and µ have subscripts they denote relative values,
while otherwise ε = ε0 εr and µ = µ0µr . Note that ε is also called the dielec-
tric constant, or dielectric function. Note also that from here on, the real and
imaginary parts of εr , µr and any other parameter will be marked by a prime or
double prime, respectively. Throughout this book we consider only “simple” mate-
rials; namely, those that are linear, isotropic and homogeneous (LIH), for which
ε and µ are scalars. Although such an assumption is not strictly valid for meta-
materials, we will still use it because it simplifies the treatment of their optical
response.

2.2.3 Boundary conditions

To obtain a full description of an electromagnetic field, we must supplement the
four Maxwell equations and the three constitutive equations with four continuity
equations. This third group of equations, called the boundary conditions, imposes
restrictions on the electromagnetic fields at an abrupt interface separating two
media. Let n̂12 denote a unit vector pointing from media 1 to media 2 that is perpen-
dicular to an infinitesimal area of this interface. Elementary considerations dictate
the existence of two vector equations,

n̂12 × (
E(2) − E(1)

) = 0 (2.8)

and

n̂12 × (
H (2) − H (1)

) = ĵ . (2.9)

Here, the tangential component of E is continuous across this interface, while the
tangential component of H equals the surface electric current density, ĵ , across this
interface. Also dictated are two scalar equations,

n̂12 · (
D(2) − D(1)

) = ρ̂ (2.10)

and

n̂12 · (
B(2) − B(1)

) = 0, (2.11)

where the subscripts i = 1 and 2 refer to each of the bounding media. Equations
(2.10) and (2.11) show that the normal component of D equals the surface charge
density, ρ̂, across the interface, while the normal component of B is continuous
across this interface. Note that the most frequently used boundary conditions relate
to E and H which will also be referred to as the (vector) electric and (vector)
magnetic fields.
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2.2 Topics in electromagnetic theory 7

2.2.4 Maxwell’s equations in terms of time-harmonic fields

Let E, H , D and B be time-harmonic propagating fields, denoted generally by
F. F can be decomposed into a time-independent part, F0, multiplied by the
time-harmonic function ei ω t = cos(ωt) + i sin(ωt), where f , ω = 2π f and t
denote frequency, angular frequency and time, respectively, and i = √−1. In the
next section we treat a propagating wave in terms of F such that

F = F0 f ei(k·r−ω t). (2.12)

Here, F0 = F0(r) is a space-dependent and time-independent vector field, r a
position vector and k a complex wave vector perpendicular to the plane of con-
stant phase of a propagating field. Note that the real and imaginary parts of k
will be denoted by k′ and k′′, respectively. Let k have three Cartesian components
given by

k = kx x̂ + ky ŷ + kz ẑ, (2.13)

such that the vector field F, when propagating along the k̂-direction, can be written
explicitly as

F = F0 ei(kx
′ x+ky

′ y+kz
′ z−ωt) e−kx

′′ x e−ky
′′ y e−kz

′′ z. (2.14)

Here, the real (primed) and imaginary (double-primed) parts in the exponents rep-
resent the propagating and decaying parts of the wave, respectively. It will be
convenient to express the curl of F using the determinant form, namely

∇ × F ≡

∣∣∣∣∣∣∣∣

x̂ ŷ ẑ
∂

∂x

∂

∂y

∂

∂z
Fx Fy Fz

∣∣∣∣∣∣∣∣
. (2.15)

The components of the determinant are

(∇ × F)x ≡ x̂
(

∂

∂y
Fz − ∂

∂z
Fy

)
, (2.16)

(∇ × F)y ≡ − ŷ
(

∂

∂x
Fz − ∂

∂z
Fx

)
(2.17)

and

(∇ × F)z ≡ ẑ
(

∂

∂x
Fy − ∂

∂y
Fx

)
. (2.18)

If F0 is not only frequency independent but also space-independent, then the two
Maxwell vector equations, Eqs. (2.1) and (2.2), can be written, respectively, as

k × E − ω B = 0 (2.19)
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8 Electromagnetics of planar surface waves

and

i k × H + i ω ε E = σ E, (2.20)

which can also be written as

k × B + µ (ω ε0 εr + i σ) E = 0. (2.21)

We can define a generalized form of relative permittivity, ε̂r , where the electric
conductivity is absorbed into the conventional definition of the permittivity ε̂r ,

ε̂r = εr + i σ
/
(ε0 ω) , (2.22)

such that

k × B + ωε0ε̂r µ E = 0. (2.23)

From now on, for simplicity, we will omit the hat above εr . The two Maxwell scalar
equations, Eqs. (2.3) and (2.4), can also be expressed in terms of time-harmonic
functions by

k · E = 0 (2.24)

and

k · B = 0. (2.25)

We can rewrite Eq. (2.19), assuming a plane-parallel wave propagating in the k̂
direction where E⊥H⊥k, as

H = k

ω µ
k̂ × E, (2.26)

where k̂ is a unit vector in the k direction. Using λ f = v = c/(
√

εr
√

µr ), where
c and v are the speed of light in free space and in the medium in which the wave
propagates, respectively, gives

H =
√

ε

µ
k̂ × E. (2.27)

Note that we have explicitly used
√

εr
√

µr rather than
√

εr µr as will be explained
at a later stage.

2.2.5 Electric and magnetic fields in terms of each other

The determinant representation of the curl of E is

∇ × E =
∣∣∣∣∣∣

x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

Ex Ey Ez

∣∣∣∣∣∣ = i µ ω H . (2.28)
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2.2 Topics in electromagnetic theory 9

It yields the three components of H in terms of the partial derivatives of E,

Hx = −i

µ ω

(
∂

∂y
Ez − ∂

∂z
Ey

)
, (2.29)

Hy = −i

µ ω

(
∂

∂x
Ez − ∂

∂z
Ex

)
(2.30)

and

Hz = −i

µ ω

(
∂

∂x
Ey − ∂

∂y
Ex

)
. (2.31)

We can repeat the same procedure for the curl of H ,

∇ × H ≡
∣∣∣∣∣∣

x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

Hx Hy Hz

∣∣∣∣∣∣ = −i ε ω E, (2.32)

from which the three components of E are derived,

Ex ≡ i

ε ω

(
∂

∂y
Hz − ∂

∂z
Hy

)
, (2.33)

Ey = i

ε ω

(
∂

∂x
Hz − ∂

∂z
Hx

)
(2.34)

and

Ez = i

ε ω

(
∂

∂x
Hy − ∂

∂y
Hx

)
. (2.35)

We will use Eqs. (2.29) to (2.31) and (2.33) to (2.35) extensively when solving
for the electromagnetic modes that propagate along interfaces that separate two or
more media.

2.2.6 Wave equations and the appearance of a refractive index

We now introduce a wave equation that describes the propagation of an electro-
magnetic wave in terms of its electric and magnetic fields. Let us start by applying
vector calculus to Eqs. (2.1), (2.2), (2.5) and (2.6), assuming that we deal with
a simple material and with harmonic fields. Eliminating B, D and H yields the
second-order differential equation in E

∇2 E − ε µ
∂2

∂t2
E = ∇2 E − n

c

∂2

∂t2
E = 0, (2.36)

with an identical equation where H replaces E. These two equations are called
wave equations because they connect the second-order spatial derivative of a field
with its second-order temporal derivative. Note that the parameter n in Eq. (2.36),
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10 Electromagnetics of planar surface waves

which is called the refractive index, is usually given as the square root of the
product of εr and µr . This is fine for materials whose εr

′ and µr
′ are not both

negative. However, this is not the case for metamaterials for which both can be
negative across a frequency range. To accomodate such a case we will from now
on broaden the concept of the refractive index and define it as n = √

εr
√

µr .
Thus, n is positive for positive εr

′ and µr
′ and negative for negative εr

′ and µr
′.

If only one is negative, the two definitions are identical. Note that this is our first
encounter of a parameter composed of a square root of two other parameters. We
will encounter other such cases as we go along. Note that the extension to complex
values of εr , µr and n is not straightforward, because the sign of the imaginary
part of the refractive index is associated with a decaying or growing field, so that
energy conservation has to be taken into account. The solution of Eq. (2.36), whose
general form is given by Eq. (2.12), yields

E = E0 e
i
(

n k0 k̂·x−ω t
)
. (2.37)

Equation (2.37) describes a wave that propagates with a velocity v given by

v = c/n, (2.38)

where c = 1/
√

ε0 µ0 is the speed of light in free space.

2.2.7 Group velocity and phase velocity

Consider now a scalar wave packet, E(t, z), consisting of a superposition of scalar
plane-parallel harmonic waves, propagating in the z-direction in a simple medium,
having a Gaussian envelope. The packet as a function of t and z is given by

E(t, z) =
∫ ∞

−∞
E0(ω)εi[k(ω)z−ω t]d ω, (2.39)

and shown in Fig. 2.1 as a function of t at a fixed position z.
The k-vector associated with this wave packet, k(ω), can be expanded in a Taylor

series at ω̄, yielding to second order

k(ω) = k (ω̄) + d k(ω)

d ω
�ω. (2.40)

Here ω̄ is the mean angular frequency of the wave packet and �ω is defined by

�ω = ω − ω̄. (2.41)

Equation (2.39) can now be written as

E(t, z) = εi[k(ω̄)z−ω̄ t]
∫ ∞

−∞
E0(ω) e

−i�ω
(

t− d k(ω)
d ω

|ω̄z
)

d ω. (2.42)
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