
1 Introduction

Roughly speaking, a lattice is a periodic arrangement of points in the n-dimensional
Euclidean space. 1 It reflects the “geometry of numbers” – in the words of the
late nineteenth century mathematician Hermann Minkowski. Except for the one-
dimensional case (where all lattices are equivalent up to scaling), there are infinitely
many shapes of lattices in each dimension. Some of them are better than others.

Good lattices form effective structures for various geometric and coding prob-
lems. Crystallographers look for symmetries in three-dimensional lattices, and relate
them to the physical properties of common crystals. A mathematician’s classical
problem is to pack high-dimensional spheres – or cover space with such spheres –
where their centers form a lattice. The communication engineer and the information
theorist are interested in using lattices for quantization and modulation, i.e., as a
means for lossy compression (source coding) and noise immunity (channel coding).
Although these problems seem different, they are in fact closely related.

The effectiveness of good lattices – as well as the complexity of describing or
using them for coding – increases with the spatial dimension. Such lattices tend to be
“perfect” in all aspects as the dimension goes to infinity. But what does “goodness”
mean in dimensions 2, 3, 4, . . .?

In two dimensions, the hexagonal lattice is famous for the honeycomb shape
of its Voronoi cells. The centers of the billiard (pool) balls in Figure 1.1 fall on a
hexagonal lattice, which forms the tightest packing in two dimensions. The same
hexagonal lattice defines a configuration for deploying cellular base stations that
maximizes the coverage area per base station.

Interestingly, however, for higher dimensions the problems of packing and cov-
ering are not equivalent. In Figure 1.2, the centers of the oranges fall on the face-
centered cubic (FCC) lattice, which is the best known sphere packing in three
dimensions. In contrast, the best deployment of cellular base stations in a skyscraper
(which maximizes their three-dimensional coverage) is over a body-centered cubic
(BCC) lattice, illustrated in Figure 1.3.

1 See the Wikipedia disambiguation page for other meanings of the word “lattice”: in art and design, music,
math and science.
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2 Introduction

Figure 1.1 Billiard (pool) balls packed in a triangle, for an initial game position.

Figure 1.2 Packing oranges in a pile: each row is half-diameter shifted with respect to the
previous row to reduce the unused volume. Similarly, each layer is staggered to fill the
holes in the layer below it. The centers of the oranges form a lattice known as a
face-centered cubic (FCC) lattice.

Which is the “best” lattice in each dimension is a question we shall not address;
issues of efficient design and coding complexity of lattices are not at the focus
of this book either. Instead, we characterize the performance of a lattice code
by its thickness (relative excess coverage) and density (relative packed volume),
and by the more communication-oriented figures of merit of normalized second
moment (NSM) for quantization, and normalized volume to noise ratio (NVNR)
for modulation. We define these quantities in detail in Chapter 3, and use them
in Chapters 4–9 to evaluate lattice codes for the basic point-to-point source and
channel coding problems. As we shall see, high-dimensional lattice codes can close
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Introduction 3

Figure 1.3 Three-dimensional sphere covering with a BCC lattice, describing the best
deployment of cellular base stations in a skyscraper. The solid line shows even layers; the
gray line shows odd layers. Compare the staggering pattern with that of the pile of oranges
in Figure 1.2.

the gap to the information theoretic limits of communication: the capacity and rate-
distortion function, quantities introduced by Shannon in his seminal 1948 paper
[240], and further refined during the 1950s and 1960s.

The 1970s and 1980s saw the blooming of network information theory. Remark-
ably, some of the fundamental network problems were successfully solved using
Shannon’s information measures and random coding techniques, now with the
additional variant of random binning. Simple examples of such network setups
are side-information problems: the Slepian–Wolf and Wyner–Ziv source coding
problem, and the Gelfand–Pinsker “dirty-paper” channel coding problem. The lat-
tice framework provides a structured coding solution for these problems, based on
a nested pair of lattices. This nested lattice configuration calls for new composite
figures of merit: one component lattice should be a good channel code (have a low
NVNR), while the other component lattice should be a good quantizer (have a low
NSM). For joint source-channel coding problems, lattices with a good NSM-NVNR
product are desired. We shall develop these notions in Chapters 10 and 11.

The curious reader may still wonder why we need a book about lattices in
information theory. After all, Shannon’s probabilistic measures and random coding
techniques characterize well the limits of capacity (channel coding) and compression
(source coding), and they also allow the study of source and channel networks
[53, 64]. From the practical world side, communication theory provides ways to
combine modulation with “algebraic” codes and approach the Shannon limits.

All this is true, yet between the theoretical and the constructive points of view
something gets lost. Both the probabilistic and the algebraic approaches somewhat
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4 Introduction
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Figure 1.4 Source coding followed by channel coding. For an analog source and channel, the
combined system maps a point in R

n (a source vector) to a point in R
m (a channel input

vector). The ratio m/n is known as the “bandwidth-expansion factor.”

hide the interplay between analog signals like sound or noise (created by nature)
and digital modulation signals (created by man). Lattices are discrete entities in the
analog world, and as such they bridge nicely the gap between the two worlds. At
large dimensions, good lattices mimic the behavior of Shannon’s random codes. For
small dimensions, they represent an elegant combination of modulation and digital
coding. As a whole, lattices provide a unified framework to study communication
and information theory in an insightful and inspiring way.

Recent developments in the area of network information theory (mostly from
the 2000s) have added a new chapter to the story of lattice codes. In some setups,
structured codes are potentially performance-wise better than the traditional random
coding schemes! And as Chapter 12 shows, the natural candidates to achieve the
benefit of structure in Gaussian networks are, again, lattice codes.

1.1 Source and channel coding

Let us describe briefly how lattices fit into the framework of digital communication
and classical information theory.

By Shannon’s separation principle, transmission of an information source over a
noisy channel is split into two stages: source coding, where the source is mapped into
bits, and channel coding, where the digital representation of the source is mapped
into a channel input signal. These two stages, which we describe in detail below, are
illustrated in Figure 1.4.

The source coding (or compression) problem deals with compact digital represen-
tation of source signals. In lossless compression, our goal is to remove redundancy
due to asymmetry in the frequency of appearance of source values, or to “memory”
in the source. In this case, the source signal is available already in a digital form,
say, as a sequence of binary symbols. And the task is to map n “redundant” source
bits s = s1, . . . , sn into k = k(s) code bits, where k < n. 2

2 We would like k to be smaller than n for most source vectors (or for the most likely ones) in order to
compress; but not too small, so the mapping would be invertible for (almost) all source vectors, for lossless
reproduction.
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1.1 Source and channel coding 5
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Figure 1.5 Scalar uniform quantization of a Gaussian source, followed by variable-length
coding, i.e., n = 1 and k is varying. Each quantization level represents a range of source
values.

In lossy compression, the source is usually continuous in nature: an analog rep-
resentation of speech, sound, picture or video signal. Digitizing an analog signal
consists first of converting it into a discrete form (both in time and in amplitude),
and then coding it in the discrete alphabet domain. In discrete time the source
is again a vector s = s1, . . . , sn , representing n consecutive source samples. After
the vector s is encoded into a k-bit codeword, it is decoded and reconstructed as
ŝ = ŝ1, . . . , ŝn . The overall operation of mapping s to ŝ is called quantization, and
the image (for a fixed k, the set of all 2k possible reconstruction vectors ŝ in R

n) is
the quantization codebook.

A lattice quantizer codebook consists of points from an n-dimensional lattice.
The codebook can be a truncated version (of size 2k) of the lattice, or the whole
lattice (with a variable codeword length k = k(ŝ)). We would like to make the bit
rate R = k/n (or the average coding rate R = k̄/n) as small as possible, subject
to a constraint on the reconstruction fidelity. Figure 1.5 shows the case of a scalar
(n = 1) lattice quantizer with a variable code length k(ŝ).

Channel coding deals with transmitting or storing information over a noisy chan-
nel or on a storage device. Our goal here is to add redundancy to the transmitted
signal, to make it distinguishable from the noise. The channel input alphabet may
be discrete, say, binary. In this case, transmission amounts to mapping k bits of
information into n “redundant” code bits, where n > k.

The most common communication links are, however, over continuous media:
telephone lines, cables or radio waves. The baseband channel representation is in
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Figure 1.6 Two-dimensional finite lattice constellations, consisting of 16 points (k = 4).
(A) A simple square constellation, representing uncoded quadrature-amplitude modulation
(QAM); here n′ = k = 4. (B) A hexagonal lattice constellation, represented as a mapping
of redundant binary vectors of length n′ = 5 into a rectangular constellation.

discrete time, so the channel input is a vector x = x1, . . . , xn . Coding over such
a channel turns out to be in many ways the dual of encoding an analog source.
It consists of two stages: an error-correction coding stage, where redundancy is
added in the discrete alphabet domain (e.g., by converting k information bits to
n′ > k code bits); and a modulation stage, where the digital codeword is mapped
into the vector x. The overall encoder mapping is thus of a k-bit information vector
into a point in R

n (representing n consecutive channel inputs). The set of all 2k

possible input vectors x is called a codebook or a constellation.
A lattice constellation is a truncated version (of size 2k) of an n-dimensional

lattice. We would like to make the coding rate R = k/n – which is now the (usually
fixed) number of transmitted information bits per channel input – as large as possible,
subject to a constraint on the probability of decoding error. See two examples of
two-dimensional lattice constellations in Figure 1.6.

One benefit of the lattice coding framework that we can immediately recognize
is that coding and modulation (or quantization) are combined as a single entity; a
lattice code directly maps digital information (say, an index) into a vector in R

n ,
and vice versa.

1.2 The information theoretic view

Information theory characterizes the ultimate performance limits of source and
channel coding, as the code block length n goes to infinity.
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1.3 Structured codes 7

In the channel coding case, the coding rate R is upper bounded (for a vanish-
ing error probability) by the Shannon capacity C of the channel. The quantity C
(associated with a memoryless channel with a transition distribution p(y|x)) is cal-
culated by maximizing the mutual information (a functional of p(x) and p(y|x))
over the input distribution p(x). The maximizing input distribution p∗(x) is used to
prove the achievability of C : a set of ≈2nC codewords is generated randomly and
independently with an i.i.d. distribution p∗(x); a random coding argument is then
used to show that based on the channel output, the decoder can guess the correct
transmitted codeword with a high probability as n →∞.

We see that à la Shannon, good codewords look like realizations of random noise.
In the case of a binary-symmetric channel, the code generating noise consists of
equally likely 0/1 bits. In the quadratic-Gaussian case, the code should be generated
by a white-Gaussian noise (WGN).

Rate-distortion theory uses similar ideas to establish the ultimate performance
limits of lossy source coding [18]. The Shannon rate-distortion function R(D) lower
bounds the coding rate R of any lossy compression scheme with distortion level
of at most D (under some given distortion measure). And similarly to the channel
coding case, computation of R(D) induces an optimal reconstruction distribution,
which is used to generate a good random codebook: independent realizations of
a Bernoulli(1/2) sequence compose the codewords for a binary-symmetric source
under Hamming distortion, while independent realizations of WGN compose the
codewords for a white-Gaussian source under mean-squared distortion.

The fact that good codewords look like white noise is intriguing. Intuitively, one
would expect the symbols of a codeword to be dependent, to distinguish them from
the channel noise. This has made the random coding idea, on the one hand, a source
of inspiration for many since Shannon presented his landmark theory in 1948. On
the other hand, it sets a challenge for finding more structured ways to approach
the information theoretic limits, ways in which the dependence between the code
symbols is more explicit. Can noise be realized in a structured way?

1.3 Structured codes

The Hamming code – mentioned already in Shannon’s 1948 paper – was the early
bird of the structured coding approach. It was followed by the breakthrough of
algebraic coding theory in the 1950s and 1960s [21]. The implication was that, in
fact, a good collection of random-like bits can be constructed as an additive group
in the binary modulo-2 space. These linear codes take various forms, such as Reed–
Muller, BCH and, more recently, LDPC, turbo and polar codes, and they also have
extensions to non-binary (Reed–Solomon) codes and convolutional (trellis) codes.

Common to all these codes is that for a random message, the resulting n-length
codeword is indeed roughly uniformly distributed over the n-dimensional binary
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8 Introduction

space. That is, each code bit takes the values 0 and 1 with equal probability;
furthermore, small subsets of code bits are roughly independent.

The extension of this concept to continuous signals is however less obvious:
can a code mimic Gaussian noise in a structured way? A first step towards this
goal is provided by Shannon’s asymptotic equipartition property (AEP). In a high
dimension n, the typical set of WGN of variance σ 2 is a spherical shell of radius
≈
√

nσ 2. Thus, the codewords of a good code are roughly uniformly distributed
over such a spherical shell.

The concept of geometrically uniform codes (GUC) [86] suggests a deterministic
characterization for a “uniform-looking” code: every codeword should have the
same distance spectrum to its neighboring codewords. This concept captures the
desired property of a good Euclidean code, in both the block and the convolutional
(trellis) coding frameworks.

Due to their periodic and linear structure, lattices are natural candidates for
unbounded GUCs. For example, the commonly used QAM constellation shown in
Figure 1.6(A) is a truncated version of the square lattice, while the more “random-
like” set of two-dimensional codewords shown in Figure 1.6(B) is a truncated
version of the hexagonal lattice. Moreover, the code designer can shape the borders
of these constellations to be more round, for example, by truncating them into a
circle or into a coarser hexagonal cell. And as the dimension gets high, lattices
which are truncated into a “good” coarse lattice cell become closer to a randomly
generated Gaussian codebook.

1.4 Preview

We shall get to the exciting applications mentioned earlier after building up some
necessary background. The book starts by introducing lattices in Chapter 2, and the
notions of lattice goodness in Chapter 3. Chapter 4 introduces two central players
in our framework: dithering, which is a means to randomize a lattice code, and
Wiener estimation, which is a means to reduce the quantization or channel noise.
The importance of these techniques will be revealed gradually throughout the book.

Equipped with these notions and techniques, we consider variable-rate (“entropy-
coded”) dithered quantization (ECDQ) using an unbounded lattice in Chapter 5. In
particular, we shall see how the NSM characterizes the redundancy of the ECDQ
above Shannon’s rate-distortion function. The reader who is interested primarily in
channel coding may skip Chapter 5, and continue directly to modulation with an
unbounded lattice constellation in Chapter 6. 3 This chapter shows how the NVNR
determines the gap from capacity of a lattice constellation. It also describes variable-
rate dithered modulation, which is the channel coding counterpart of ECDQ.

3 Sections which are optional reading for the flow of the book are denoted by an asterisk.
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1.4 Preview 9

Before moving to more advanced coding setups, we stop to examine the existence
of asymptotically good lattices in Chapter 7. In Chapter 8 we define nested lattices,
and finite Voronoi-shaped codebooks taken from a lattice. These notions form
in Chapter 9 the basis for Voronoi modulation, which achieves the capacity of a
power-constrained AWGN channel, and for Voronoi quantization, which achieves
the quadratic-Gaussian rate-distortion function. In both these solutions, dither and
Wiener estimation play crucial roles.

A small step takes us from the point-to-point communication setups above to side-
information problems in Chapter 10. We shall construct lattice code solutions for
the Wyner–Ziv problem (source coding with side information at the decoder) and
the “dirty-paper” problem (channel coding with side information at the encoder).
These lattice coding schemes serve as building blocks for common multi-terminal
communication problems: encoding of distributed sources and broadcast channels.
Before moving to more general networks, we examine in Chapter 11 a lattice-
based joint source-channel coding technique, called modulo-lattice modulation
(MLM). A combination of MLM and prediction leads to “analog matching” of
sources and channels with mismatched spectra, and to “bandwidth conversion.”
Chapter 12 extends the discussion on multi-terminal problems to general Gaussian
networks. There we shall see that when side information is distributed among
several nodes of the network, lattice codes are not only attractive complexity-wise,
but sometimes they have better performance than traditional random coding and
binning techniques.

Chapter 13 complements the discussion of asymptotically good lattice codes in
Chapter 7 by examining their error exponents. As for capacity, good lattice codes
turn out to be optimal also in terms of this more refined aspect.

Information theory is not a critical prerequisite for reading this book, but (starting
from Chapter 5) we use information measures, such as entropy, mutual information
and capacity, to assess system performance. To keep the book self-contained, the
Appendix includes elementary background in information theory, as well as some
other complementary material.

As mentioned above, dithering and Wiener estimation are central concepts in
the lattice coding framework. The question of where and in what sense they are
necessary will follow our discussion throughout the book.

What’s not in the book?
The writer has the freedom to focus on his favorite subject. Naturally (in the case
of this writer) the book takes an information theoretic flavor, with less emphasis on
coding theoretic aspects. For algebra of lattices, and for specific constructions of
lattices and coded-modulation schemes from error-correcting codes, the reader is
referred to the comprehensive book of Conway and Sloane [49], and to the excellent
class notes of Forney [81] and Calderbank [28].
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10 Introduction

Encoding and decoding complexity is a topic of theoretical as well as practi-
cal importance, although traditionally neglected by information theory. A good
introduction to the subject can be found in the survey paper of Agrell et al.
[3]. The vast literature on MIMO communication contains numerous publications
about the design of linear coded-modulation schemes and efficient lattice decoding
algorithms.

In the fight between a timely manuscript and time of publication, some topics
which are natural to the spirit of the book were left out. One such topic is the
extension to colored-Gaussian sources and channels; see, for example, [211, 288,
291]. Another topic is the emerging area of lattice wiretap codes; see, for example,
the survey paper by Liang et al. [156] and other recent work [118, 168]. Hopefully
these topics will find their way to a later edition of the book.

Finally, since the late 1990s lattice-based cryptography has been a major area
of research in computer science. Its connection to lattice codes for communication
is yet to be explored; see the book by Micciancio and Goldwasser [186], and the
survey by Micciancio and Regev [188].
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