
Complex Multiplication

This is a self-contained account of the state of the art in classical complex
multiplication that includes recent results on rings of integers and applications to
cryptography using elliptic curves. The author is exhaustive in his treatment, giving a
thorough development of the theories of elliptic functions, modular functions and
quadratic number fields and providing a concise summary of the results from class
field theory. The main results are accompanied by numerical examples, equipping any
reader with all the tools and formulae they need.

Topics covered include: the construction of class fields over quadratic imaginary
number fields by singular values of the modular invariant j and Weber’s tau-function;
explicit construction of rings of integers in ray class fields and Galois module
structure; the construction of cryptographically relevant elliptic curves over finite
fields; proof of Berwick’s congruences using division values of the Weierstrass-p
function; and relations between elliptic units and class numbers.
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Preface

The aim of this book is to give an account of the state of the art in
classical complex multiplication including, in particular, recent results on
rings of integers and applications to cryptography using elliptic curves.
All requisites needed about elliptic functions, modular functions and
quadratic number fields are developed in this book and the results from
class field theory are summarised in compact form. Further, most of the
main results presented in the following chapters are accompanied by a
plethora of numerical examples.† The reader interested in the application
of the various explicit results will therefore find all the necessary tools
in this book.

After the early results of Abel and Kronecker at the beginning of and
mid nineteenth century, Weber at the start of the twentieth century gave
the first systematic account of complex multiplication in his "Lehrbuch
der Algebra III". The aim of this theory is to generate abelian extensions
of quadratic imaginary number fields by values of elliptic functions and
modular functions. Up until 1931 further accounts of the theory were
given by Fricke (1916, 1922) and Fueter (1924, 1927). Finally, Hasse
(1927) using class field theory that had developed in the meantime,
presented a very short and elegant version of complex multiplication.
His work contains the generation of ray class fields over a quadratic
imaginary number field by singular values of the modular invariant j and
Weber’s τ function, using in the proof, besides class field theory, only
the discriminant from the theory of elliptic functions. A more detailed
exposition of the theory including a proof of the principal ideal theorem
was provided by Deuring (1958). However, results on rings of integers
had not been thus far obtained.

† I would like to thank the KANT group of TU Berlin headed by Michael Pohst for
their help in computation by KASH (www.math.tu-berlin.de/kant).
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xii Preface

Geometrically, in complex multiplication the generation of ray class
fields over imaginary quadratic number fields is quite analogous to the
construction of cyclotomic fields by roots of unity, which are torsion
points of the unit circle. In complex multiplication the role of the unit
circle is taken by a suitable elliptic curve E: the coefficients of E gen-
erate the Hilbert class field Ω, and the ray class fields are obtained by
adjoining to Ω the x-coordinate of some torsion point of E. In view of
this analogy one may pose the question whether it is possible to find
explicit construction not only for the fields but also for their rings of
integers as algebra or as Galois modules. Further, analogous to cyclo-
tomic theory, one may ask for constructions of unit groups together with
formulae for the class number. In fact, all this has been shown in the
works of Leopoldt (1954, 1962) to be possible for cyclotomic fields. The
solutions to these problems in complex multiplication form the central
topics of this book. The following problems are treated in detail:

• Classical and simple generators for ring class fields and ray class fields
• Construction of rings of integers in ray class fields by explicit basis
• Galois module structure of these rings of integers including explicit

construction of Galois generators and associated orders
• Construction of unit groups of maximal rank including their relation

to class numbers
• Proof and generalisation of Berwick’s congruences for the singular

values of the modular invariant j

A recent application of complex multiplication described in this book is
concerned with

• the construction cryptographically relevant elliptic curves over finite
fields.

As shown in Chapter 9, the problem behind this construction is to find
generating polynomials with small coefficients for abelian extensions of a
quadratic imaginary number field. In contrast to cyclotomic theory, this
is a non-trivial task, because the singular values of the modular invariant
and the Weber τ function have minimal polynomials with astronomic
coefficients.

Compared to cyclotomic theory the results obtained in complex mul-
tiplication, so far, seem complete. On the other hand there are numerous
interesting questions concerning the generalisation to abelian varieties of
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Preface xiii

higher dimension, for which a thorough understanding of complex multi-
plication is essential. These questions are in fact of very real interest be-
cause varieties of higher dimension can also be applied in cryptography.
Such results can, for example, be found in the works of Weng (2001,
2003) for curves of genus 2 and 3. Conversely, the generalisation of the
construction of class fields including results on the structure of rings of
integers and class numbers remain unsolved. To obtain such results it
may be useful to look at geometric analogies and analytic relations be-
tween cyclotomic fields with the unit circle of genus 0 and class fields of
complex multiplication with their elliptic curves of genus 1 as described
in Chapters 6 and 7 and to find such relations between curves of genus
1 and a higher genus.
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