Inertial MEMS

Principles and Practice

A practical and systematic overview of the design, fabrication, and testing of MEMS-based inertial sensors, this comprehensive and rigorous guide shows you how to analyze and transform application requirements into practical designs, and helps you to avoid potential pitfalls and to cut design time.

With this book you'll soon be up to speed on the relevant basics, including MEMS technologies, packaging, kinematics and mechanics, and transducers. You'll also get a thorough evaluation of different approaches and architectures for design and an overview of key aspects of testing and calibration.

Unique insights into the practical difficulties of making sensors for real-world applications make this up-to-date description of the state of the art in inertial MEMS an ideal resource for professional engineers in industry, managers, and application engineers, as well as for students looking for a complete introduction to the area.

VOLKER KEMPE has more than 40 years of experience in research and development in both academia and industry. He led the microelectronics engineering department at Austria Mikro Systems for over 10 years. In 2003 he co-founded, and became Vice President of, SensorDynamics AG, and his current interests focus on the functionality, technology, and application of inertial MEMS. Cambridge University Press 978-0-521-76658-6 - Inertial MEMS: Principles and Practice Volker Kempe Frontmatter <u>More information</u>

Inertial MEMS

Principles and Practice

Volker Kempe Sensor Dynamics AG, Austria

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Tokyo, Mexico City

Cambridge University Press The Edinburgh Building, Cambridge CB2 2RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521766586

 ${\ensuremath{\mathbb C}}$ Cambridge university Press 2011

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2011

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data Kempe, Volker. Inertial MEMS : principles and practice / Volker Kempe. p. cm. Includes bibliographical references and index. ISBN 978-0-521-76658-6 (hardback) 1. Microelectromechanical systems. 2. Inertial navigation systems. 3. BioMEMS. I. Title. TK7875.K46 2011 629.04'5 - dc22 2010037668

ISBN 978-0-521-76658-6 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. 1

 $\mathbf{2}$

Contents

Pre_{j}	Preface					
Ack	Acknowledgments					
Not	ation		xvi			
Intr	Preface page Acknowledgments Notation ntroduction A short foray through the pre-MEMS history Applications and market 3 The ingredients of inertial MEMS References Eransducers Pransducers Eransducers C1.1 Stress, strain, and piezoresistivity Hooke's law Normal stresses Shear stresses Stress and strain tensors The stress-strain relation for anisotropic materials The piezoresistance of silicon 2.1.2 Rotation of coordinate systems Coordinate frames The rotation tensor Transformation of tensors of second order 2.2.1 Piezoresistors 2.2.2 Piezoresistors on silicon Thin piezoresistors 2.2.3 Piezoresistors on silicon Thin piezoresistors on silicon Thin piezoresistors on polysilicon Pressentary of the presentation in piezoresistors					
1.1	A sho	rt foray through the pre-MEMS history	1			
1.2	Appli	cations and market	6			
1.3	The is	ngredients of inertial MEMS	9			
Refe	erences		11			
Tra	nsducer	ïs	13			
2.1	Aniso	tropic material properties, tensors, and rotations	13			
	2.1.1	Stress, strain, and piezoresistivity	14			
		Hooke's law	14			
		Normal stresses	14			
		Shear stresses	15			
		Stress and strain tensors	17			
		The stress–strain relation for anisotropic materials	21			
		The piezoresistance of silicon	24			
	2.1.2	Rotation of coordinate systems	25			
		Coordinate frames	26			
		The rotation tensor	27			
		Transformation of tensors of second order	30			
2.2	Piezo	resistive transducers	33			
	2.2.1	Piezoresistors	33			
	2.2.2	Piezoresistors on silicon	34			
		Thin piezoresistors	35			
		Temperature compensation in piezoresistors	36			
	2.2.3	Piezoresistors on polysilicon	38			
2.3	Piezo	electric transducers	39			
	2.3.1	The piezoelectric effect	39			
	2.3.2	Piezoelectric equations	42			
		Piezoelectric sensors in MEMS	43			

vi	Con	Contents				
	24	Cana	ritive transducers	47		
	2.4	241	Floetrostatic forces	41		
		2.4.1 2 4 2	Parallel-plate capacitors	4 <i>3</i> 51		
		2.4.2	Capacitance sonsing	51		
			The pull in effect	53		
		213	Tilting plate capacitors	55		
		2.4.0	Nonlinear distortions	56		
			Instabilities of a singular tilting plate	58		
			Instabilities of the tilting capacitance pair	58		
		244	Comb capacitors	62		
		2.1.1	Unidirectional linear combs	62		
			Bidirectional actuation	65		
			Badial combs	66		
			Frame-based capacitors	67		
		245	Levitation	69		
		2.1.0	Comb levitation	69		
			Levitation in drive combs	71		
			Beduction of levitation forces	73		
	Refe	erences		75		
ર	Non	_inortis	al forces	70		
5	2 1	Sprin		70		
	0.1	3 1 1	Booms	19 80		
		3.1.1 3.1.2	The stiffness matrix	81		
		313	The bending equation for beams	82		
		0.1.0	Internal forces and moments	83		
			Differential relations of a bent beams	83		
		314	Cantilever beams	87		
		0.1.1	Cantilevers under different loads	87		
			Skew beam bending and asymmetric suspensions	90		
			Residual stress in bending beams	93		
		3.1.5	Torsion springs	96		
		0.2.0	Cylindrical torsion bars	96		
			Torsion bars with arbitrary cross-section	97		
			Rectangular bars	100		
			Cylindrical bars	101		
		3.1.6	Stress concentration	101		
		3.1.7	Suspensions	103		
			Parallel and serial spring connections	103		
			Beam chains	104		
			Plate suspension	105		
	3.2	Damp	bing forces	108		
		3.2.1	Fluid-flow models	108		

				Contents	vi
			Continuous viscous flow		111
			Viscosity of gases		112
			Continuous-flow equations		114
		3.2.2	Slide damping		117
			Couette flow for slowly moving plates		118
			Stokes flow for rapidly oscillating plates		120
		3.2.3	Squeeze damping		124
			Reynolds' equation		125
			Low-frequency squeeze damping		127
			High-frequency squeeze damping		131
			The impact of perforation		137
		3.2.4	Drag forces		143
		3.2.5	Free molecular flow		145
		3.2.6	Structural damping		147
	Refe	rences			148
4	MEN	MS tecl		152	
	4.1	Micro	fabrication of inertial MEMS		153
		4.1.1	Basic microelectronic fabrication steps		154
			Deposition		155
			Patterning		159
			Doping		161
		4.1.2	Etching		162
			Isotropic wet etching		162
			Anisotropic wet etching		164
			Electrochemical etch stop		167
		4.1.3	Dry etching		168
			Reactive-ion etching		168
			Deep reactive-ion etching		170
	4.2	Wafer	bonding		172
		4.2.1	Zero-level packaging and wafer bonding		172
		4.2.2	Wafer-bonding processes		174
			Fusion bonding		175
			Anodic bonding		176
			Glass-frit bonding		177
			Metallic-alloy seal bonding		179
			Polymer bonding		180
			Thermocompression bonding		180
	4.3	Integr	ated processes		180
		4.3.1	Bulk micromachining		182
		4.3.2	Surface micromachining		184
			A thick polysilicon process		185
			Cavity sealing using SMM		188

viii	Con	tents					
		4.3.3	SOI-MEMS processes	189			
			MEMS prototyping processes	192			
		4.3.4	CMOS-MEMS	192			
			Pre-CMOS MEMS	193			
			Intra-CMOS MEMS	195			
			Post-CMOS MEMS	196			
	Refe	erences		199			
5	Firs	First-level packaging					
	5.1	5.1 FLP packages					
	5.2	FLP	technologies	209			
		5.2.1	Dicing and die separation	210			
		5.2.2	Die attachment	211			
			Packaging materials	212			
			Die-attachment-induced stress	213			
		5.2.3	Electrical interconnection	217			
		5.2.4	Encapsulation	220			
			Overmolded plastic packages	221			
			Pre-molded plastic packages	223			
	Refe	erences		225			
6	Elec	Electrical interfaces					
	6.1	Sensi	ng electronics – building blocks	228			
		6.1.1	The MOS transistor	229			
			Drain current	229			
			The small-signal model	231			
		6.1.2	Operational and transconductance amplifiers	234			
			A simple transconductance amplifier	234			
			Models of operational and transconductance amplifiers	236			
			The real Op Amp	240			
			Instrumentation amplifiers	246			
	6.2	Sense	or interfaces	247			
		6.2.1	Resistive interfaces	247			
		6.2.2	Piezoelectric interfaces	249			
		6.2.3	Capacitive interfaces	253			
			Principles of capacitive sensing	254			
			Current sensing	255			
			Voltage sensing	258			
			Charge sensing	259			
			Comparison and improvements	260			
			Switched-capacitor sensing	260			
	6.3	Data	converters	266			
		6.3.1	Sampling and hold	266			

		Contents	ix				
	6.3.2	Single-sample conversion in the amplitude domain	268				
	6.3.3	Time-domain conversion	269				
		Pulse-width and pulse-density modulation	269				
		$\Sigma\Delta$ Converters	271				
Ref	erences		280				
7 Acc	Accelerometers						
7.1	General measurement objectives						
7.2	7.2 The spring–mass system						
	7.2.1	The transfer functions	286				
		The trade-off between sensitivity and bandwidth	291				
	7.2.2	Accelerometer imperfections	292				
		A simplified accelerometer model with imperfections	296				
		Cross-coupling	297				
	7.2.3	Accelerometer feedback control	298				
		The linearized feedback model	300				
		The signal-to-noise ratio	305				
		Closed-loop dynamics	307				
	7.2.4	Feedback control with nonlinear actuators	309				
		Bidirectional capacitive actuators	310				
		Single-sided actuators	312				
		Linearization and embedded $\Sigma \Lambda$ converters	313				
73	Resor	pant accelerometers	319				
1.0	731	Resonant beams	320				
	1.0.1	Resonance vibration – exact solution	320				
		Resonance frequencies by the energy method	323				
	732	Resonant accelerometer systems	324				
74	Ream	accelerometers	326				
1.1	7 4 1	Beam dynamics	328				
	1.1.1	The principle of virtual work	320				
		Figenmode expansion	330				
		Damping and electrostatic forces	330				
		Static deflection	333				
	749	Model implementation	222				
	1.4.2	The impact of poplineer demping	225				
		Final sector nonlinear damping					
75	Varia	reeuback control	000 997				
1.5	7 E 1		007 007				
	7.5.1	Connecting accelerometers	337				
	7.5.2 E	1D to CD accelerometers	339				
7.6	From	ID to bD accelerometers	341				
	7.6.1	1D accelerometers	342				
		Piezoresistive accelerometers	343				
		Capacitive accelerometers	346				

х

Contents

			Piezoelectric accelerometers	348
		7.6.2	2D and 3D accelerometers	350
			Parallel implementation	350
			$2\mathrm{D}$ and $3\mathrm{D}$ accelerometers with multi-DOF sensing elements	353
		7.6.3	6D accelerometers	355
	Refe	erences		358
8	Gyr	oscopes	3	364
	8.1	Some	basic principles	364
	8.2	Kinen	natics of gyroscopes	367
		8.2.1	Platform rotation and angular velocity	369
		8.2.2	Body rotation in a non-inertial system	371
		8.2.3	The angular-momentum theorem	373
		8.2.4	The momentum equation	375
		8.2.5	The small-angle approximation	376
	8.3	The p	erformance of gyroscopes	378
	8.4	Rate-i	integrating gyroscopes	380
		8.4.1	Two-DOF gyroscopes	380
		8.4.2	The principle of angular gyroscopes	381
		8.4.3	An imperfection model	385
		8.4.4	Imperfection in angular gyroscopes	387
		8.4.5	Gyroscope control	388
	8.5	Rate :	gyroscopes	389
		8.5.1	System architecture	391
			The drive resonator	393
		~ ~ ~	Sensing	393
		8.5.2	Resonance sensing	395
		8.5.3	Non-resonant sensing	398
		8.5.4	Noise	400
		8.5.5	The zero-rate output	402
			Mechanical bias sources	403
			Q-bias	405
			The impact of transducer imperfections	408
			R-bias	409
		0 - 0	Other bias sources	410
		8.5.6	Bias stability	411
		8.5.7	Acceleration suppression and tuning forks	413
			Anti-phase-driven identical gyroscopes	414
		050	Tuning-fork gyroscopes	415
		8.5.8	Drive-motion control and spring nonlinearities	418
			The phase-locked loop	418
			The amplitude loop	419
			Spring nonlinearities and the resonator transfer function	421

_

9

		Contents	xi
8.6	Gyros	scope architectures	424
	8.6.1	Mode-decoupling architectures	424
	8.6.2	z-Gyroscopes	424
		Mode decoupling by frame-based architectures	424
		Doubly decoupled z-gyroscopes	427
	8.6.3	In-plane-sensitive gyroscopes	429
		In-plane-sensitive linear gyroscopes	429
		Linear–rotatory gyroscopes	430
	8.6.4	Torsional gyroscopes	431
		1D torsional gyroscopes	432
		Decoupled torsional gyroscopes	433
8.7	Non-p	olanar MEMS gyroscopes	438
	8.7.1	Beam gyroscopes	438
	8.7.2	Quartz tuning forks	440
	8.7.3	Ring gyroscopes	441
	8.7.4	Bulk acoustic-wave gyroscopes	443
8.8	2D an	nd 3D gyroscopes and ways towards a 6D IMU	444
	8.8.1	Single-mass multiple-DOF inertial sensors	445
		Gyroscope-free, single-mass IMUs	445
		Single-mass, gyroscope-based IMUs	445
		5D inertial sensors	447
	8.8.2	2D gyroscopes	448
	8.8.3	3D gyroscopes	449
		A fully decoupled 3D gyroscope and extension towards an IMU	450
Refe	erences		452
Test	t and ca	alibration	460
Refe	erences		464
Con	ncluding	j remarks	466
Refe	erences		467
Inde	ex		468

The color plates are to be found between pages 240 and 241.

Preface

Inertial microelectromechanical sensors – commonly abbreviated to inertial MEMS – have a history of more than two decades of intense research, development, and commercialization. Sometimes unperceived, they left the shadow of military and space-related utilities and entered daily life hidden in products surrounding us. Cars with airbag-release sensors and electronic stability control have become a matter of course. Activity monitoring of pacemaker patients and stabilization of platforms such as transport robots and cameras are now improving our quality of life. The creation of easy-to-use human–machine interfaces has helped many people to conquer complicated equipment around us, not only computer games. The penetration of inertial MEMS – often merged with other sensor systems – into new application areas is a trend that is still gaining momentum.

The intention of this book is to reflect the interdisciplinary complexity of inertial MEMS. It will try to give a systematic survey of the design, fabrication, and performance evaluation of MEMS-based inertial sensors, with emphasis on the practical problems arising from the impact of technological imperfections and of often harsh environmental conditions. A product going to the market has to be guaranteed to have a certain level of reliability against failure throughout its lifetime.

The basic concepts and the theoretical background of inertial measurements will be presented. However, the book has evolved not from academic activity but rather from conceptual and development work within industry. It is intended to address the symbiosis of practice and theory. Consequently, the analysis and transformation of application requirements into design concepts plays a significant role. Considerable space is devoted to the analysis and modeling of parasitic effects, of shock and vibration robustness, of the stability of the main performance parameters and so on, since this is necessary for practical work.

The book contains nine chapters. Six of them – including the introduction – cover various aspects of MEMS, with a special focus on inertial MEMS. The first chapter describes the most important transducers and their properties. The second one is dedicated to non-inertial forces such as spring forces and damping forces that play a crucial role for designing inertial MEMS. The next two chapters cover the main MEMS technologies, including packaging, while the electronic interfaces are presented in a further chapter. These six chapters may be

xiv Preface

interesting not only for people working with inertial MEMS but also for everybody who is looking for a general introduction into mechanical MEMS.

The following two main chapters are devoted to the two representatives of inertial MEMS – accelerometers and gyroscopes. Here the focus is on the basic principles, the methods and models to describe the dynamic behavior, and a comprehensive presentation of different approaches and architectures, including their pros and cons. A short overview on test and calibration is added as a separate chapter.

The book is written on an engineering level. Where possible, effects and processes are described analytically by mathematical models in order to impart a feeling for the order of magnitude of different effects.

The book should be useful not only for specialists developing, manufacturing, and using inertial sensors but also for people working in the application field, for product managers, and for sales people looking for background knowledge in their area. The book can serve as a starting point for further academic investigations, for instance in the area of shock-impact analysis of an entire packaged gyro, including the effect of signal processing.

In the experience of the author, many engineers, physicists, and mathematicians are thankful for an exact but comprehensible presentation of the complex and difficult world of MEMS-based inertial sensors, where the effects and models behind the practical problems are reflected without improper simplifications or phenomenological descriptions. The book is a modest attempt to meet some of these challenges. Having worked with many specialists in the production, testing, and design of inertial sensors, the author is convinced that the book can meet actual needs, and hopes to elicit the broad interest of practitioners and scientists in this area. For interested people, including students, the book may also serve as an introduction to the world of mechanical MEMS.

Acknowledgments

I would like to express my gratitude to all my colleagues at SensorDynamics AG (Austria) and the Institut für Silizium Technologie (ISIT) of the Fraunhofer Society (Germany) for creating an atmosphere that has helped to solve the manifold problems of MEMS industrialization. I would like to thank the 'Inertial Micro Sensor Systems' team, with whom I have had the great privilege of working even during the childhood of the newly founded company SensorDynamics AG. This time was most fruitful, flooding us all with new problems and insights into how to solve them.

My thanks go to my colleagues from SensorDynamics for providing me with such necessary illustrative material for the book as SEM photographs and measurement plots. Gottfried Frais, Manfred Heller, Christian Rossadini, Jörg Schönbacher, Ute Stotter, and Johann Wagner prepared a lot of material from which I could select the most appropriate items. Gerd Radl and his team accompanied me during all my mistakes with new hardware and software.

Drago Strle from the University of Ljubljana deserves my special thanks for the close cooperation throughout all $\Sigma\Delta$ -related issues. Peter Merz from the ISIT gave me invaluable feedback on all technology-related questions. Professor Karl Wohlhart from the University of Graz helped me to gain a deeper understanding of the kinematics of gyroscopes. Hanno Hammer took on the burden of proofreading the first chapters and supplying me with valuable feedback.

Last but not least, warmest thanks go to my family for supporting me despite all the personal loads that each of us has had to carry. Julia and Oded helped me to resolve quickly the countless difficulties in adapting appropriate documentcreating tools to my needs. Vera, Ian, and Marius gave valuable advice on English phrasing. My dear wife took on additional duties despite her own excessive workload in working with very ill patients. Thank you.

Notation

- 1. A convention employed in this book is the slightly lax usage of "s" as differential operator, s = d/dt, as argument of the Laplace transformation, and as argument of the Fourier transformation, $s = j\omega$. The case-dependent unambiguous or multivalent meaning is usually clear from the context. Accordingly, a filter function is described by f = f(s), which means that in a transfer function this expression has to be interpreted as a Laplace or Fourier transformation and within a differential equation as a rational fraction of two polynomial differential operators. Correspondingly, a variable like x has to be treated as a representant in the time domain if s = d/dt is supposed, or as a Laplace/Fourier-transformed function if s is meant as the argument of such a transformation.
- 2. Unless stated otherwise, coordinate systems pertain to the platform carrying the inertial sensor. In this case the x- and y-axes lie in the plane of the platform, while z is the out-of-plane axis. Out-of-plane and z-axis orientation are used synonymously.