Detection and Estimation for Communication and Radar Systems

Covering the fundamentals of detection and estimation theory, this systematic guide describes statistical tools that can be used to analyze, design, implement, and optimize real-world systems. Detailed derivations of the various statistical methods are provided, ensuring a deeper understanding of the basics. Packed with practical insights, it uses extensive examples from communication, telecommunication, and radar engineering to illustrate how theoretical results are derived and applied in practice. A unique blend of theory and applications, and more than 80 analytical and computational end-of-chapter problems, make this an ideal resource for both graduate students and professional engineers.

Kung Yao is a Distinguished Professor in the Electrical Engineering Department at the University of California, Los Angeles. He received his BS (Highest Honors) and Ph.D. from Princeton University. A Life Fellow of the IEEE, he has worked for or consulted for several leading companies, including AT&T Bell Laboratories, TRW, Hughes Aircraft Company, and Raytheon.

Flavio Lorenzelli received his Ph.D. from the University of California, Los Angeles, and for several years was with ST Microelectronics. The recipient of a Fulbright fellowship in 1989, he has been an engineer at the Aerospace Corporation since 2007 and is a Lecturer in the Electrical Engineering Department at UCLA.

Chiao-En Chen is an Assistant Professor in both the Department of Electrical Engineering and the Department of Communications Engineering at National Chung Cheng University, Taiwan. He received his PhD from the University of California, Los Angeles, in 2008.

"This text is tailor-made for first year graduate students, with its easy-to-follow presentation style, self-contained background materials, and even simulation methods that are perfect for new learners and practitioners."

Zhi Ding, University of California, Davis

"Making things as simple as possible, but not simpler, is an art well mastered by the authors, whose teaching experience shines through the whole book and makes it an ideal text for electrical engineering students, especially those taking courses in wireless communications. The panoply of examples and homework problems included in the book makes it also an invaluable tool for self-study."

Ezio Biglieri, University of California, Los Angeles

"This book strikes a good balance between engineering insight and mathematical rigor. It will make an excellent textbook for either an advanced undergraduate class or a first-year graduate class on detection and estimation theory."

Laurence Milstein, University of California, San Diego

Cambridge University Press 978-0-521-76639-5 - Detection and Estimation for Communication and Radar Systems Kung Yao, Flavio Lorenzelli and Chiao-En Chen Frontmatter More information

Detection and Estimation for Communication and Radar Systems

KUNG YAO University of California, Los Angeles

FLAVIO LORENZELLI The Aerospace Corporation, Los Angeles

CHIAO-EN CHEN National Chung Cheng University, Taiwan

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Mexico City

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521766395

© Cambridge University Press 2013

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2013

Printed and bound in the United Kingdom by the MPG Books Group

A catalog record for this publication is available from the British Library

ISBN 978-0-521-76639-5 Hardback

Additional resources for this publication at www.cambridge.org/yaolorenzellichen

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Cambridge University Press 978-0-521-76639-5 - Detection and Estimation for Communication and Radar Systems Kung Yao, Flavio Lorenzelli and Chiao-En Chen Frontmatter <u>More information</u>

To my wife, Mary, and my children, David, Erica, and I	Roger K.Y.
To my mom	F.L.
To my family	C.E.C.

Cambridge University Press 978-0-521-76639-5 - Detection and Estimation for Communication and Radar Systems Kung Yao, Flavio Lorenzelli and Chiao-En Chen Frontmatter <u>More information</u>

Contents

	Prefe	ace	<i>page</i> xi
1	Intro	duction and motivation to detection and estimation	1
	1.1	Introduction	1
	1.2	A simple binary decision problem	3
	1.3	A simple correlation receiver	6
	1.4	Importance of SNR and geometry of the signal vectors in detection	
		theory	7
	1.5	BPSK communication systems for different ranges	13
	1.6	Estimation problems	17
		1.6.1 Two simple estimation problems	17
		1.6.2 Least-absolute-error criterion	19
		1.6.3 Least-square-error criterion	20
		1.6.4 Estimation robustness	21
		1.6.5 Minimum mean-square-error criterion	23
	1.7	Conclusions	28
	1.8	Comments	29
	Refe	rences	31
	Prob	lems	31
2	Revie	ew of probability and random processes	35
	2.1	Review of probability	35
	2.2	Gaussian random vectors	40
		2.2.1 Marginal and conditional pdfs of Gaussian random vectors	41
	2.3	Random processes (stochastic processes)	43
	2.4	Stationarity	46
	2.5	Gaussian random process	51
	2.6	Ensemble averaging, time averaging, and ergodicity	53
	2.7	WSS random sequence	54
	2.8	Conclusions	56
	2.9	Comments	57
	2.A	Proof of Theorem 2.1 in Section 2.2.1	58
	2.B	Proof of Theorem 2.2 in Section 2.2.1	60

viii	Conte	nts	
	Refer	rences	60
	Problems		
3	Hypothesis testing		
	3.1	Simple hypothesis testing	65
	3.2	Bayes criterion	66
	3.3	Maximum a posteriori probability criterion	71
	3.4	Minimax criterion	72
	3.5	Neyman–Pearson criterion	75
	3.6	Simple hypothesis test for vector measurements	77
	3.7	Additional topics in hypothesis testing (*)	80
		3.7.1 Sequential likelihood ratio test (SLRT)	80
		3.7.2 Uniformly most powerful test	85
	2.0	3.7.3 Non-parametric sign test	88
	3.8 2.0	Conclusions	90
	5.9 Dofor	Comments	91
	Probl	ems	91 92
4	Detec	tion of known binary deterministic signals in Gaussian noises	97
	4.1	Detection of known binary signal vectors in WGN	97
	4.2	Detection of known binary signal waveforms in WGN	103
	4.3	Detection of known deterministic binary signal vectors in colored	
		Gaussian noise	109
	4.4	Whitening filter interpretation of the CGN detector	112
	4.5	Complete orthonormal series expansion	116
	4.6	Karhunen–Loève expansion for random processes	117
	4.7	Detection of binary known signal waveforms in CGN via the KL	
		expansion method	124
	4.8	Applying the WGN detection method on CGN channel received	
		data (*)	130
		4.8.1 Optimization for evaluating the worst loss of performance	132
	4.9	Interpretation of a correlation receiver as a matched filter receiver	135
	4.10	Conclusions	138
	4.11	Comments	139
	4.A		139
	4.B		140
	Refer	rences	141
	Probl	ems	141
5	<i>M</i> -ar	y detection and classification of deterministic signals	149
	5.1	Introduction	149
	5.2	Gram–Schmidt orthonormalization method and orthonormal expansion	150

		Contents	ix
	5.3	<i>M</i> -ary detection	154
	5.4	Optimal signal design for <i>M</i> -ary systems	168
	5.5	Classification of M patterns	171
		5.5.1 Introduction to pattern recognition and classification	171
		5.5.2 Deterministic pattern recognition	173
	5.6	Conclusions	185
	5.7	Comments	186
	Refe	rences	186
	Prob	lems	187
6	Non-	coherent detection in communication and radar systems	190
	6.1	Binary detection of a sinusoid with a random phase	190
	6.2	Performance analysis of the binary non-coherent detection system	195
	6.3	Non-coherent detection in radar receivers	201
		6.3.1 Coherent integration in radar	201
		6.3.2 Post detection integration in a radar system	202
		6.3.3 Double-threshold detection in a radar system	205
		6.3.4 Constant False Alarm Rate (CFAR)	207
	6.4	Conclusions	210
	6.5	Comments	210
	Refe	rences	211
	Prob	lems	211
7	Para	meter estimation	214
	7.1	Introduction	214
	7.2	Mean-square estimation	215
		7.2.1 Non-linear mean-square estimation and conditional expectation7.2.2 Geometry of the orthogonal principle and mean-square	218
		estimation	220
		7.2.3 Block and recursive mean-square estimations	226
	7.3	Linear LS and LAE estimation and related robustness and sparse	
		solutions	230
		7.3.1 LS estimation	230
		7.3.2 Robustness to outlier (*) of LAE solution relative to LS solution	232
		7.3.3 Minimization based on l_2 and l_1 norms for solving linear system	
		of equations (*)	234
	7.4	Basic properties of statistical parameter estimation	238
		7.4.1 Cramér–Rao Bound	243
		7.4.2 Maximum likelihood estimator	247
		7.4.3 Maximum a posteriori estimator	253
		7.4.4 Bayes estimator	255
	7.5	Conclusions	258
	7.6	Comments	258

Cambridge University Press
978-0-521-76639-5 - Detection and Estimation for Communication and Radar Systems
Kung Yao, Flavio Lorenzelli and Chiao-En Chen
Frontmatter
More information

X	Conte	ents	
	7.A	Proof of Theorem 7.1 of Section 7.3.3	259
	7.B	Proof of Theorem 7.3 of Section 7.4.1	260
	Refe	rences	262
	Prob	lems	264
8	Analy	ytical and simulation methods for system performance analysis	271
	8.1	Analysis of receiver performance with Gaussian noise	272
	8.2	Analysis of receiver performance with Gaussian noise and other	
		random interferences	276
		8.2.1 Evaluation of $P_{\rm e}$ based on moment bound method	278
	8.3	Analysis of receiver performance with non-Gaussian noises	282
		8.3.1 Noises with heavy tails	282
		8.3.2 Fading channel modeling and performance analysis	287
		8.3.3 Probabilities of false alarm and detection with robustness	
		constraint	293
	8.4	Monte Carlo simulation and importance sampling in	
		communication/radar performance analysis	296
		8.4.1 Introduction to Monte Carlo simulation	297
		8.4.2 MC importance sampling simulation method	299
	8.5	Conclusions	304
	8.6	Comments	304
	8.A	Generation of pseudo-random numbers	306
		8.A.1 Uniformly distributed pseudo-random number generation	307
		8.A.2 Gaussian distributed pseudo-random number generation	309
		8.A.3 Pseudo-random generation of sequences with arbitrary	200
	0.0	distributions	309
	8.B	Explicit solution of $p_V(\cdot)$	310
	Refe	rences	312
	Prob	iems	314
	Index	r	318

Cambridge University Press 978-0-521-76639-5 - Detection and Estimation for Communication and Radar Systems Kung Yao, Flavio Lorenzelli and Chiao-En Chen Frontmatter More information

Preface

This publication was conceived as a textbook for a first-year graduate course in the Signals and Systems Area of the Electrical Engineering Department at UCLA to introduce basic statistical concepts of detection and estimation and their applications to engineering problems to students in communication, telecommunication, control, and signal processing. Students majoring in electromagnetics and antenna design often take this course as well. It is not the intention of this book to cover as many topics as possible, but to treat each topic with enough detail so a motivated student can duplicate independently some of the thinking processes of the originators of these concepts. Whenever possible, examples with some numerical values are provided to help the reader understand the theories and concepts. For most engineering students, overly formal and rigorous mathematical methods are probably neither appreciated nor desirable. However, in recent years, more advanced analytical tools have proved useful even in practical applications. For example, tools involving eigenvalue-eigenvector expansions for colored noise communication and radar detection; non-convex optimization methods for signal classification; non-quadratic estimation criteria for robust estimation; non-Gaussian statistics for fading channel modeling; and compressive sensing methodology for signal representation, are all introduced in the book.

Most of the material in the first seven chapters of this book can be covered in a course of 10 weeks of 40 lecture hours. A semester-long course can more thoroughly cover more material in these seven chapters and even some sections of Chapter 8. Homework problems are provided in each chapter. The solutions of odd-numbered problems are available from the Cambridge University Press website. The solutions of the evennumbered problems are available (also from Cambridge University Press) to instructors using this book as a textbook. The prerequisites of this book include having taken undergraduate courses on linear systems, basic probability, and some elementary random processes. We assume the students are familiar with using Matlab for computations and simulations. Indeed, some of the statements in the book and in the homework problems use standard Matlab notations.

Comments and references including bibliographic information are provided at the end of each chapter. The authors of this book certainly appreciate the extensive prior research in journal and book publications on all the topics covered in this book. Omissions of references on some technical topics/methodologies, and even some homework problems that may have appeared elsewhere, are not intentional. In such cases, we seek your understanding and indulgence.