NONEQUILIBRIUM MANY-BODY THEORY OF QUANTUM SYSTEMS

The Green's function method is one of the most powerful and versatile formalisms in physics, and its nonequilibrium version has proved invaluable in many research fields. This book provides a unique, self-contained introduction to nonequilibrium many-body theory.

Starting with basic quantum mechanics, the authors introduce the equilibrium and nonequilibrium Green's function formalisms within a unified framework called the contour formalism. The physical content of the contour Green's functions and the diagrammatic expansions are explained with a focus on the time-dependent aspect. Every result is derived step-by-step, critically discussed and then applied to different physical systems, ranging from molecules and nanostructures to metals and insulators. With an abundance of illustrative examples, this accessible book is ideal for graduate students and researchers who are interested in excited state properties of matter and nonequilibrium physics.

GIANLUCA STEFANUCCI is a Researcher at the Physics Department of the University of Rome Tor Vergata, Italy. His current research interests are in quantum transport through nanostructures and nonequilibrium open systems.

ROBERT VAN LEEUWEN is Professor of Physics at the University of Jyväskylä in Finland. His main areas of research are time-dependent quantum systems, many-body theory, and quantum transport through nanostructures.
NONEQUILIBRIUM MANY-BODY THEORY OF QUANTUM SYSTEMS

A Modern Introduction

GIANLUCA STEFANUCCI
University of Rome Tor Vergata

ROBERT VAN LEEUWEN
University of Jyväskylä
Contents

Preface xi
List of abbreviations and acronyms xv
Fundamental constants and basic relations xvii

1 Second quantization 1
1.1 Quantum mechanics of one particle 1
1.2 Quantum mechanics of many particles 7
1.3 Quantum mechanics of many identical particles 10
1.4 Field operators 17
1.5 General basis states 22
1.6 Hamiltonian in second quantization 26
1.7 Density matrices and quantum averages 35

2 Getting familiar with second quantization: model Hamiltonians 39
2.1 Model Hamiltonians 39
2.2 Pariser–Parr–Pople model 41
2.3 Noninteracting models 45
2.3.1 Bloch theorem and band structure 46
2.3.2 Fano model 54
2.4 Hubbard model 59
2.4.1 Particle–hole symmetry: application to the Hubbard dimer 61
2.5 Heisenberg model 64
2.6 BCS model and the exact Richardson solution 67
2.7 Holstein model 71
2.7.1 Peierls instability 74
2.7.2 Lang–Firsov transformation: the heavy polaron 76

3 Time-dependent problems and equations of motion 81
3.1 Introduction 81
3.2 Evolution operator 82
3.3 Equations of motion for operators in the Heisenberg picture 86
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4 Continuity equation: paramagnetic and diamagnetic currents</td>
<td>89</td>
</tr>
<tr>
<td>3.5 Lorentz Force</td>
<td>92</td>
</tr>
<tr>
<td>4 The contour idea</td>
<td>95</td>
</tr>
<tr>
<td>4.1 Time-dependent quantum averages</td>
<td>95</td>
</tr>
<tr>
<td>4.2 Time-dependent ensemble averages</td>
<td>100</td>
</tr>
<tr>
<td>4.3 Initial equilibrium and adiabatic switching</td>
<td>106</td>
</tr>
<tr>
<td>4.4 Equations of motion on the contour</td>
<td>110</td>
</tr>
<tr>
<td>4.5 Operator correlators on the contour</td>
<td>114</td>
</tr>
<tr>
<td>5 Many-particle Green's functions</td>
<td>125</td>
</tr>
<tr>
<td>5.1 Martin–Schwinger hierarchy</td>
<td>125</td>
</tr>
<tr>
<td>5.2 Truncation of the hierarchy</td>
<td>129</td>
</tr>
<tr>
<td>5.3 Exact solution of the hierarchy from Wick's theorem</td>
<td>135</td>
</tr>
<tr>
<td>5.4 Finite and zero-temperature formalism from the exact solution</td>
<td>140</td>
</tr>
<tr>
<td>5.5 Langreth rules</td>
<td>143</td>
</tr>
<tr>
<td>6 One-particle Green's function</td>
<td>153</td>
</tr>
<tr>
<td>6.1 What can we learn from G?</td>
<td>153</td>
</tr>
<tr>
<td>6.1.1 The inevitable emergence of memory</td>
<td>155</td>
</tr>
<tr>
<td>6.1.2 Matsubara Green's function and initial preparations</td>
<td>158</td>
</tr>
<tr>
<td>6.1.3 Lesser/greater Green's function: relaxation and quasi-particles</td>
<td>161</td>
</tr>
<tr>
<td>6.2 Noninteracting Green's function</td>
<td>168</td>
</tr>
<tr>
<td>6.2.1 Matsubara component</td>
<td>169</td>
</tr>
<tr>
<td>6.2.2 Lesser and greater components</td>
<td>171</td>
</tr>
<tr>
<td>6.2.3 All other components and a useful exercise</td>
<td>173</td>
</tr>
<tr>
<td>6.3 Interacting Green's function and Lehmann representation</td>
<td>178</td>
</tr>
<tr>
<td>6.3.1 Steady-states, persistent oscillations, initial-state dependence</td>
<td>179</td>
</tr>
<tr>
<td>6.3.2 Fluctuation–dissipation theorem and other exact properties</td>
<td>186</td>
</tr>
<tr>
<td>6.3.3 Spectral function and probability interpretation</td>
<td>190</td>
</tr>
<tr>
<td>6.3.4 Photoemission experiments and interaction effects</td>
<td>194</td>
</tr>
<tr>
<td>6.4 Total energy from the Galitskii–Migdal formula</td>
<td>202</td>
</tr>
<tr>
<td>7 Mean field approximations</td>
<td>205</td>
</tr>
<tr>
<td>7.1 Introduction</td>
<td>205</td>
</tr>
<tr>
<td>7.2 Hartree approximation</td>
<td>207</td>
</tr>
<tr>
<td>7.2.1 Hartree equations</td>
<td>208</td>
</tr>
<tr>
<td>7.2.2 Electron gas</td>
<td>211</td>
</tr>
<tr>
<td>7.2.3 Quantum discharge of a capacitor</td>
<td>213</td>
</tr>
<tr>
<td>7.3 Hartree–Fock approximation</td>
<td>224</td>
</tr>
<tr>
<td>7.3.1 Hartree–Fock equations</td>
<td>225</td>
</tr>
<tr>
<td>7.3.2 Coulombic electron gas and spin-polarized solutions</td>
<td>228</td>
</tr>
</tbody>
</table>
8 Conserving approximations: two-particle Green's function 235

8.1 Introduction 235
8.2 Conditions on the approximate G_2 237
8.3 Continuity equation 238
8.4 Momentum conservation law 240
8.5 Angular momentum conservation law 242
8.6 Energy conservation law 243

9 Conserving approximations: self-energy 249

9.1 Self-energy and Dyson equations I 249
9.2 Conditions on the approximate Σ 253
9.3 Φ functional 255
9.4 Kadanoff–Baym equations 260
9.5 Fluctuation–dissipation theorem for the self-energy 264
9.6 Recovering equilibrium from the Kadanoff–Baym equations 267
9.7 Formal solution of the Kadanoff–Baym equations 270

10 MBPT for the Green's function 275

10.1 Getting started with Feynman diagrams 275
10.2 Loop rule 279
10.3 Cancellation of disconnected diagrams 280
10.4 Summing only the topologically inequivalent diagrams 283
10.5 Self-energy and Dyson equations II 285
10.6 G-skeleton diagrams 287
10.7 W-skeleton diagrams 289
10.8 Summary and Feynman rules 292

11 MBPT and variational principles for the grand potential 295

11.1 Linked cluster theorem 295
11.2 Summing only the topologically inequivalent diagrams 299
11.3 How to construct the Φ functional 300
11.4 Dressed expansion of the grand potential 307
11.5 Luttinger–Ward and Klein functionals 309
11.6 Luttinger–Ward theorem 312
11.7 Relation between the reducible polarizability and the Φ functional 314
11.8 Ψ functional 318
11.9 Screened functionals 320

12 MBPT for the two-particle Green's function 323

12.1 Diagrams for G_2 and loop rule 323
12.2 Bethe-Salpeter equation 326
12.3 Excitons 331
12.4 Diagrammatic proof of $K = \pm \delta \Sigma / \delta G$ 337
12.5 Vertex function and Hedin equations 339
13 Applications of MBPT to equilibrium problems

13.1 Lifetimes and quasi-particles
13.2 Fluctuation–dissipation theorem for P and W
13.3 Correlations in the second-Born approximation
13.3.1 Polarization effects
13.4 Ground-state energy and correlation energy
13.5 GW correlation energy of a Coulombic electron gas
13.6 T-matrix approximation
13.6.1 Formation of a Cooper pair

14 Linear response theory: preliminaries

14.1 Introduction
14.2 Shortcomings of the linear response theory
14.2.1 Discrete–discrete coupling
14.2.2 Discrete–continuum coupling
14.2.3 Continuum–continuum coupling
14.3 Fermi golden rule
14.4 Kubo formula

15 Linear response theory: many-body formulation

15.1 Current and density response function
15.2 Lehmann representation
15.2.1 Analytic structure
15.2.2 The f-sum rule
15.2.3 Noninteracting fermions
15.3 Bethe–Salpeter equation from the variation of a conserving G
15.4 Ward identity and the f-sum rule
15.5 Time-dependent screening in an electron gas
15.5.1 Noninteracting density response function
15.5.2 RPA density response function
15.5.3 Sudden creation of a localized hole
15.5.4 Spectral properties in the G_0W_0 approximation

16 Applications of MBPT to nonequilibrium problems

16.1 Kadanoff–Baym equations for open systems
16.2 Time-dependent quantum transport: an exact solution
16.2.1 Landauer–Büttiker formula
16.3 Implementation of the Kadanoff–Baym equations
16.3.1 Time-stepping technique
16.3.2 Second-Born and GW self-energies
16.4 Initial-state and history dependence
16.5 Charge conservation
16.6 Time-dependent GW approximation in open systems
16.6.1 Keldysh Green’s functions in the double-time plane
16.6.2 Time-dependent current and spectral function
Contents

16.6.3 Screened interaction and physical interpretation 490
16.7 Inbedding technique: how to explore the reservoirs 492
16.8 Response functions from time-propagation 496

Appendices

A From the N roots of 1 to the Dirac δ-function 503
B Graphical approach to permanents and determinants 506
C Density matrices and probability interpretation 517
D Thermodynamics and statistical mechanics 523
E Green's functions and lattice symmetry 529
F Asymptotic expansions 534
G Wick's theorem for general initial states 537
H BBGKY hierarchy 552
I From δ-like peaks to continuous spectral functions 555
J Virial theorem for conserving approximations 559
K Momentum distribution and sharpness of the Fermi surface 563
L Hedin equations from a generating functional 566
M Lippmann-Schwinger equation and cross-section 572
N Why the name Random Phase Approximation? 577
O Kramers-Kronig relations 582
P Algorithm for solving the Kadanoff-Baym equations 584

References 587

Index 593
Preface

This textbook contains a pedagogical introduction to the theory of Green's functions in and out of equilibrium, and is accessible to students with a standard background in basic quantum mechanics and complex analysis. Two main motivations prompted us to write a monograph for beginners on this topic.

The first motivation is research oriented. With the advent of nanoscale physics and ultrafast lasers it became possible to probe the correlation between particles in excited quantum states. New fields of research like, e.g., molecular transport, nanoelectronics, Josephson nanojunctions, attosecond physics, nonequilibrium phase transitions, ultracold atomic gases in optical traps, optimal control theory, kinetics of Bose condensates, quantum computation, etc. added to the already existing fields in mesoscopic physics and nuclear physics. The Green's function method is probably one of the most powerful and versatile formalisms in physics, and its nonequilibrium version has already proven to be extremely useful in several of the aforementioned contexts. Extending the method to deal with the new emerging nonequilibrium phenomena holds promise to facilitate and quicken our comprehension of the excited state properties of matter. At present, unfortunately, to learn the nonequilibrium Green's function formalism requires more effort than learning the equilibrium (zero-temperature or Matsubara) formalism, despite the fact that nonequilibrium Green's functions are not more difficult. This brings us to the second motivation.

The second motivation is educational in nature. As students we had to learn the method of Green's functions at zero temperature, with the normal-orderings and contractions of Wick's theorem, the adiabatic switching-on of the interaction, the Gell–Mann–Low theorem, the Feynman diagrams, etc. Then we had to learn the finite-temperature or Matsubara formalism where there is no need of normal-orderings to prove Wick's theorem, and where it is possible to prove a diagrammatic expansion without the adiabatic switching-on and the Gell–Mann–Low theorem. The Matsubara formalism is often taught as a disconnected topic but the diagrammatic expansion is exactly the same as that of the zero-temperature formalism. Why do the two formalisms look the same? Why do we need more “assumptions” in the zero-temperature formalism? And isn't it enough to study the finite-temperature formalism? After all zero temperature is just one possible temperature. When we became post-docs we bumped into yet another version of Green's functions, the nonequilibrium Green's functions or the so called Keldysh formalism. And again this was another different way to prove Wick's theorem and the diagrammatic expansion. Furthermore, while several excellent textbooks on the equilibrium formalisms are available, here the learning process is considerably slowed down by the absence of introductory textbooks. There exist few review
Preface

articles on the Keldysh formalism and they are scattered over the years and the journals. Students have to face different jargons and different notations, dig out original papers (not all downloadable from the web), and have to find the answer to lots of typical newcomer questions like, e.g., why is the diagrammatic expansion of the Keldysh formalism again the same as that of the zero-temperature and Matsubara formalisms? How do we see that the Keldysh formalism reduces to the zero-temperature formalism in equilibrium? How do we introduce the temperature in the Keldysh formalism? It is easy to imagine the frustration of many students during their early days of study of nonequilibrium Green's functions. In this book we introduce only one formalism, which we call the contour formalism, and we do it using a very pedagogical style. The contour formalism is not more difficult than the zero-temperature, Matsubara or Keldysh formalism and we explicitly show how it reduces to those under special conditions. Furthermore, the contour formalism provides a natural answer to all previous questions. Thus the message is: there is no need to learn the same thing three times.

Starting from basic quantum mechanics we introduce the contour Green's function formalism step by step. The physical content of the Green's function is discussed with particular attention to the time-dependent aspect and applied to different physical systems ranging from molecules and nanostructures to metals and insulators. With this powerful tool at our disposal we then go through the Feynman diagrams, the theory of conserving approximations, the Kadanoff–Baym equations, the Luttinger–Ward variational functionals, the Bethe–Salpeter equation, and the Hedin equations.

This book is not a collection of chapters on different applications but a self-contained introduction to mathematical and physical concepts of general use. As such, we have preferred to refer to books, reviews and classical articles rather than to recent research papers whenever this was possible. We have made a serious effort in organizing apparently disconnected topics in a logical instead of chronological way, and in filling many small gaps. The adjective “modern” in the title refers to the presentation more than to specific applications. The overall goal of the present book is to derive a set of kinetic equations governing the quantum dynamics of many identical particles and to develop perturbative as well as nonperturbative approximation schemes for their solution.

About 600 pages may seem too many for a textbook on Green's functions, so let us justify this voluminousness. First of all there is not a single result which is not derived. This means that we have inserted several intermediate steps to guide the reader through every calculation. Secondly, for every formal development or new mathematical quantity we present carefully selected examples which illustrate the physical content of what we are doing. Sometimes the reader will find further supplementary discussion or explanations printed in smaller type; these can be skipped at a first reading. Without examples and illustrations (more than 250 figures) this book would be half the size but the actual understanding would probably be much less. The large number of examples compensates for the moderate number of exercises. Thirdly, in the effort of writing a comprehensive presentation of the various topics we came across several small subtleties which, if not addressed and properly explained, could give rise to serious misunderstandings. We have therefore added many remarks and clarifying discussions throughout the text.

The structure of the book is illustrated in Fig. 1 and can be roughly partitioned in three parts: mathematical tools, approximation schemes, and applications. For a detailed list of
Preface

Second quantization
(Chapter 1-2)

Contour formalism and Green's functions on the contour
(Chapter 3-5)

Physics of the Green's function
(Chapter 6)

Mean-field and conserving approximations
(Chapter 7-9)

Diagrammatic expansions
(Chapter 10-12)

Application to equilibrium problems
(Chapter 13)

Linear response theory
(Chapter 14-15)

Application to nonequilibrium problems
(Chapter 16)

Mathematical tools

Approximation schemes

Applications

Figure 1 Structure of the book

topics the reader can look at the table of contents. Of course the choice of topics reflects our personal background and preferences. However, we feel reasonably confident to have covered all fundamental aspects of Green's function theory in and out of equilibrium. We have tried to create a self-contained and self-study book capable of bringing the undergraduate or PhD student to the level of approaching modern literature and enabling him/her to model or solve new problems with physically justified approximations. If we are successful in this endeavor it will be due to the enthusiastic and motivated students in Rome and Jyväskylä to whom we had the privilege to teach part of this book. We thank them for their feedback from which we indeed benefited enormously.

Speaking of thanks: our first and biggest thank you goes to Carl-Olof Almbladh and Ulf von Barth who introduced us to the wonderful world of many-body perturbation theory and Green's function theory during our post-doc years in Lund. Only now that we have been forced to deepen our understanding in order to explain these methods can we fully appreciate all their "of-course-I-don't-need-to-tell-you" or "you-probably-already-know" answers to our questions. We are also thankful to Evert Jan Baerends, Michele Cini, and Hardy Gross from whom we learned a large part of what today is our background in physics and chemistry and with whom we undertook many exciting research projects. We wish to express our gratitude to our PhD students, post-docs and local colleagues Klaas Giesbertz, Petri Myöhänen, Enrico Perfetto, Michael Ruggenthaler, Niko Säkkinen, Adrian Stan, Riku Tuovinen, and Anna-Maija Uimonen, for providing us with many valuable suggestions and for helping out in generating several figures. The research on the Kadanoff–Baym equations
and their implementation which forms the last chapter of the book would not have been possible without the enthusiasm and the excellent numerical work of Nils Erik Dahlen. We are indebted to Heiko Appel, Karsten Balzer, Michael Bonitz, Raffaele Filosofi, Ari Harju, Maria Hellgren, Stefan Kurth, Matti Manninen, Kristian Thygesen, and Claudio Verdozzi with whom we had many inspiring and insightful discussions which either directly or indirectly influenced part of the contents of the book. We further thank the Department of Physics and the Nanoscience Center of the University of Jyväskylä and the Department of Physics of the University of Rome Tor Vergata for creating a very pleasant and supportive environment for the writing of the book. Finally we would like to thank a large number of people, too numerous to mention, in the research community who have shaped our view on many scientific topics in and outside of many-body theory.
Abbreviations and acronyms

a.u. : atomic units
BvK : Born-von Karman
e.g. : exempli gratia
HOMO : highest occupied molecular orbital
i.e. : id est
KMS : Kubo–Martin–Schwinger
l.h.s. : left hand side
LUMO : lowest unoccupied molecular orbital
LW : Luttinger–Ward
MBPT : Many-body perturbation theory
PPP : Pariser–Parr–Pople
QMC : Quantum Monte Carlo
r.h.s. : right hand side
RPA : Random Phase Approximation
WBLA : Wide Band Limit Approximation
XC : Exchange-Correlation
Fundamental constants and basic relations

Fundamental constants
Electron charge: \(e = -1 \) a.u. = \(1.60217646 \times 10^{-19} \) Coulomb

Electron mass: \(m_e = 1 \) a.u. = \(9.10938188 \times 10^{-31} \) kg

Planck constant: \(h = 1 \) a.u. = \(1.054571 \times 10^{-34} \) Js = \(6.58211 \times 10^{-16} \) eVs

Speed of light: \(c = 137 \) a.u. = \(3 \times 10^5 \) km/s

Boltzmann constant: \(K_B = 8.3 \times 10^{-5} \) eV/K

Basic quantities and relations
Bohr radius: \(a_B = \frac{\hbar^2}{m_e e^2} = 1 \) a.u. = 0.5 Å

Electron gas density: \(n = \frac{(\hbar p_F)^3}{2\pi^2} = (p_F \text{ being the Fermi momentum}) \)

Electron gas radius: \(\frac{1}{n} = \frac{4}{3} (a_B r_s)^3, \quad r_s = \frac{(9\pi/4)^{1/3}}{\hbar p_F} \)

Plasma frequency: \(\omega_p = \sqrt{\frac{4\pi e^2 n}{m_e}} \) (\(n \) being the electron gas density)

Rydberg \(R = \frac{e^2}{2\hbar c} = 0.5 \) a.u. \(\simeq 13.6 \) eV

Bohr magneton \(\mu_B = \frac{e\hbar}{2m_e c} = 3.649 \times 10^{-3} \) a.u. = \(5.788 \times 10^{-5} \) eV/T

Room temperature (\(T \sim 300 \) K) energy: \(K_B T \sim \frac{197}{300} \) eV

\(\hbar c \sim 197 \) MeV fm (1 fm = \(10^{-15} \) m)

\(m_e c^2 = 0.5447 \) MeV