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Preface

This book is about lambda terms typed using simple, recursive and intersec-

tion types. In some sense it is a sequel to Barendregt (1984). That book is

about untyped lambda calculus. Types give the untyped terms more struc-

ture: function applications are allowed only in some cases. In this way one

can single out untyped terms having special properties. But there is more

to it. The extra structure makes the theory of typed terms quite different

from the untyped ones.

The emphasis of the book is on syntax. Models are introduced only insofar

as they give useful information about terms and types or if the theory can

be applied to them.

The writing of this book has been different from the one on untyped

lambda calculus. First of all, since many researchers are working on typed

lambda calculus, we were aiming at a moving target. Moreover there has

been a wealth of material to work with. For these reasons the book was

written by several authors. Several long-term open problems have been

solved during the period the book was written, notably the undecidabil-

ity of lambda definability in finite models, the undecidability of second-

order typability, the decidability of the unique maximal theory extending

βη-conversion and the fact that the collection of closed terms of not every

simple type is finitely generated, and the decidability of matching at arbi-

trary types of order higher than 4. The book has not been written as an

encyclopedic monograph: many topics are only partially treated; for exam-

ple, reducibility among types is analyzed only for simple types built up from

only one atom.

One of the recurring distinctions made in the book is the difference be-

tween the implicit typing due to Curry versus the explicit typing due to

Church. In the latter case the terms are an enhanced version of the untyped

terms, whereas in the Curry theory to some of the untyped terms a collection

ix
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x Preface

of types is being assigned. The book is mainly about Curry typing, although

some chapters treat the equivalent Church variant.

The applications of the theory are within the theory itself, or in the theory

of programming languages, or in proof theory, including the technology of

fully formalized proofs used for mechanical verification, or in linguistics.

Often the applications are given in an exercise with hints.

We hope that the book will attract readers and inspire them to pursue

the topic.
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Introduction

The rise of lambda calculus

Lambda calculus is a formalism introduced by Church in 1932 that was

intended to be used as a foundation for mathematics, including its compu-

tational aspects. Supported by his students Kleene and Rosser – who showed

that the prototype system was inconsistent – Church distilled a consistent

computational part and ventured in 1936 the Thesis that exactly the intu-

itively computable functions could be captured by it. He also presented a

function that could not be captured by the λ-calculus. In that same year

Turing introduced another formalism, describing what are now called Turing

Machines, and formulated the related Thesis that exactly the mechanically

computable functions are able to be captured by these machines. Turing

also showed in the same paper that the question of whether a given state-

ment could be proved (from a given set of axioms) using the rules of any

reasonable system of logic is not computable in this mechanical way. Finally

Turing showed that the formalism of λ-calculus and Turing Machines define

the same class of functions.

Together Church’s Thesis, concerning computability by homo sapiens, and

Turing’s Thesis, concerning computability by mechanical devices, using for-

malisms that are equally powerful and that have their computational limi-

tations, made a deep impact on the 20th century philosophy of the power

and limitations of the human mind. So far, cognitive neuropsychology has

not been able to refute the combined Church–Turing Thesis. On the con-

trary, that discipline also shows the limitation of human capacities. On the

other hand, the analyses of Church and Turing indicate an element of re-

flection (universality) in both Lambda Calculus and Turing Machines, that

according to their combined thesis is also present in humans.

Turing Machine computations are relatively easy to implement on elec-

xv
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xvi Introduction

tronic devices, as started to happen early in the 1940s. The above-mentioned

universality was employed by von Neumann1 enabling the construction not

only of ad hoc computers but even a universal one, capable of performing

different tasks depending on a program. This resulted in what is now called

imperative programming , with the C language presently the most widely

used for programming in this paradigm. As with Turing Machines a com-

putation consists of repeated modifications of some data stored in memory.

The essential difference between a modern computer and a Turing Machine

is that the former has random access memory2.

Functional Programming

The computational model of Lambda Calculus, on the other hand, has given

rise to functional programming . The input M becomes part of an expression

FM to be evaluated, where F represents the intended function to be com-

puted on M . This expression is reduced (rewritten) according to some rules

(indicating the possible computation steps) and some strategy (indicating

precisely which steps should be taken).

To show the elegance of functional programming, here is a short functional

program generating primes using Eratosthenes sieve (Miranda program by

D. Turner):

primes = sieve [2..]

where

sieve (p:x) = p : sieve [n | n<-x ; n mod p > 0]

primes_upto n = [p | p<- primes ; p<n]

while a similar program expressed in an imperative language looks like (Java

program from <rosettacode.org>)

public class Sieve{

public static LinkedList<Integer> sieve(int n){

LinkedList<Integer> primes = new LinkedList<Integer>();

BitSet nonPrimes = new BitSet(n+1);

for (int p = 2; p <= n; p = nonPrimes.nextClearBit(p+1)){

for (int i = p * p; i <= n; i += p)

nonPrimes.set(i);

1 It was von Neumann who visited Cambridge UK in 1935 and invited Turing to Princeton during
1936–1937, so he probably knew Turing’s work.

2 Also, the memory on a TM is infinite: Turing wanted to be technology-independent, but was
restricting a computation with a given input to one using finite memory and time.
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Introduction xvii

primes.add(p);

}

return primes;

}

}

Of course the algorithm is extremely simple, one of the first ever invented.

However, the gain for more complex algorithms remains, as functional pro-

grams do scale up.

The power of functional programming languages derives from several facts.

(1) All expressions of a functional programming language have a constant

meaning (i.e. independent of a hidden state). This is called ‘referential

transparency’ and makes it easier to reason about functional programs

and to make versions for parallel computing, important for quality and

efficiency.

(2) Functions may be arguments of other functions, usually called ‘function-

als’ in mathematics and higher-order functions in programming. There

are functions acting on functionals, etc; in this way one obtains functions

of arbitrary order. Both in mathematics and in programming, higher-

order functions are natural and powerful phenomena. In functional pro-

gramming this enables the flexible composition of algorithms.

(3) Algorithms can be expressed in a clear goal-directed mathematical way,

using various forms of recursion and flexible data structures. The book-

keeping needed for the storage of these values is handled by the language

compiler instead of the user of the functional language3.

Types

The formalism as defined by Church is untyped. The early functional lan-

guages, of which Lisp (McCarthy et al. (1962)) and Scheme (Abelson et al.

(1991)) are best known, are also untyped: arbitrary expressions may be ap-

plied to each other. Types first appeared in Principia Mathematica, White-

head and Russell (1910-1913). In Curry (1934) types are introduced and

assigned to expressions in ‘combinatory logic’, a formalism closely related to

lambda calculus. In Curry and Feys (1958) this type assignment mechanism

was adapted to λ-terms, while in Church (1940) λ-terms were ornamented

3 In modern functional languages there is a palette of techniques (such as overloading, type
classes and generic programming) to make algorithms less dependent of specific data types and
hence more reusable. If desired the user of the functional language can help the compiler to
achieve a better allocation of values.
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xviii Introduction

by fixed types. This resulted in the closely related systems λCu
→ and λCh

→
treated in Part I.

Types are being used in many, if not most, programming languages. These

are of the form

bool, nat, real, . . .

and occur in compounds like

nat→ bool, array(real), . . .

Using the formalism of types in programming, many errors can be prevented

if terms are required to be typable: arguments and functions should match.

For example M of type A can be an argument only of a function of type

A → B. Types act in a way similar to the use of dimensional analysis in

physics. Physical constants and data obtain a ‘dimension’. Pressure p, for

example, has a dimension expressed as

M/L2

giving the constant R in Boyle’s law,

pV

T
= R,

that has a dimension which prevents one from writing an equation like E =

T R2. By contrast Einstein’s famous equation

E = mc2

is already meaningful from the viewpoint of dimensional analysis.

In most programming languages the formation of function space types is

usually not allowed to be iterated as in

(real→ real) → (real→ real) for indefinite integrals
∫

f(x)dx;

(real→ real)× real× real→ real for definite integrals
∫ b
a f(x)dx;

([0, 1] → real) → (([0, 1] → real) → real) → (([0, 1] → real) → real),

where the latter is the type of a map occuring in functional analysis, see

Lax (2002). Here we have written “[0, 1] → real” for what should be more

accurately the set C[0, 1] of continuous functions on [0, 1].

Because there is the Hindley–Milner algorithm (see Theorem 2.3.14 in

Chapter 2) that decides whether an untyped term does have a type and

computes the most general type, types have found their way to functional

programming languages. The first such language to incorporate the types

of the simply typed λ-calculus is ML (Milner et al. (1997)). An important
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Introduction xix

aspect of typed expressions is that if a term M is correctly typed by type A,

then also during the computation of M the type remains the same (see The-

orem 1.2.6, the ‘subject reduction theorem’). This is expressed as a feature

in functional programming: one only needs to check types during compile

time.

In functional programming languages, however, types come of age and

are allowed in their full potential by giving a precise notation for the type

of data, functions, functionals, higher-order functionals, . . . up to arbitrary

degree of complexity. Interestingly, the use of higher-order types given in the

mathematical examples is modest compared to higher-order types occurring

in a natural way in programming situations:

[(a → ([([b], c)] → [([b], c)]) → [([b], c)] → [b] → [([b], c)]) →
([([b], c)] → [([b], c)]) → [([b], c)] → [b] → [([b], c)]] →
a → (d → ([([b], c)] → [([b], c)]) → [([b], c)] → [b] → [([b], c)])

→ ([([b], c)] → [([b], c)]) → [([b], c)] → [b] → [([b], c)]] →
d → ([([b], c)] → [([b], c)]) → [([b], c)] → [b] → [([b], c)]] →
([([b], c)] → [([b], c)]) → [([b], c)] → [b] → [([b], c)].

This type (it does not actually occur in this form in the program, but is

notated using memorable names for the concepts being used) is used in a

functional program for efficient parser generators, see Koopman and Plas-

meijer (1999). The type [a] denotes that of lists of type a and (a, b) denotes

the ‘product’ a× b. Product types can be simulated by simple types, while

for list types one can use the recursive types developed in Part 2 of this

book. Although in the pure typed λ-calculus only a rather restricted class of

terms and types is represented, relatively simple extensions of this formalism

have universal computational power. Since the 1970s the following program-

ming languages have appeared: ML (not yet purely functional); Miranda

(Thompson (1995), <www.cs.kent.ac.uk/people/staff/dat/miranda/>)

the first purely functional typed programming language, well-designed, but

slowly interpreted; Clean (van Eekelen and Plasmeijer (1993), Plasmeijer

and van Eekelen (2002), <wiki.clean.cs.ru.nl/Clean>); and Haskell

(Hutton (2007), Peyton Jones (2003), <www.haskell.org>). Both Clean

and Haskell are state of the art pure functional languages with fast com-

piler generating fast code). They show that functional programming based

on λ-calculus can be efficient and apt for industrial software. Functional

programming languages are also being used for the design (Sheeran (2005))

and testing (Koopman and Plasmeijer (2006)) of hardware. In each case it

is the compact mathematical expressivity of the functional languages that

makes them fit for the description of complex functionality.
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xx Introduction

Semantics of natural languages

Typed λ-calculus has also been employed in the semantics of natural lan-

guages (Montague (1973), van Benthem (1995)). An early indication of this

possibility can already be found in Curry and Feys (1958), Section 8S2.

Certifying proofs

In addition to its use in design, the λ-calculus has also been used for verifi-

cation, not just for the correctness of IT products, but also of mathematical

proofs. The underlying idea is the following. Ever since Aristotle’s formula-

tion of the axiomatic method and Frege’s formulation of predicate logic, one

could write down mathematical proofs in full detail. Frege, who captured

reasoning by his introduction of the predicate logic, started to formalize

mathematics, but unfortunately began from an axiom system that turned

out to be inconsistent, as shown by the Russell paradox. In Principia Math-

ematica Whitehead and Russell used types to prevent the paradox. They

had the same formalization goal in mind and developed some elementary

arithmetic. Based on their work, Gödel was able to state and prove his

fundamental incompleteness result. In spite of the intention behind Prin-

cipia Mathematica, proofs in the underlying formal system were not fully

formalized. Substitution was left as an informal operation and in fact the

way Principia Mathematica treated free and bound variables was implicit

and incomplete. Here begins the role of the λ-calculus. As a formal sys-

tem dealing with manipulating formulas, distinguishing carefully between

free and bound variables and their interaction, it was the missing link to-

wards a full formalization. Now, if an axiomatic mathematical theory is

fully formalized, a computer can verify the correctness of the definitions and

proofs. The reliability of computer-verified theories relies on the fact that

logic has only about a dozen rules and their implementation poses relatively

few problems. This idea was pioneered in the late 1960s by N. G. de Bruijn in

the proof-checking language and system Automath (Nederpelt et al. (1994),

<www.win.tue.nl/automath>).

The methodology has given rise to proof-assistants. These are computer

programs that help the human user to develop mathematical theories. The

initiative comes from the human who formulates notions, axioms, definitions,

proofs and computational tasks. The computer verifies the well-definedness

of the notions, the correctness of the proofs, and performs the computational

tasks. In this way arbitrary mathematical notions can represented and ma-
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Introduction xxi

nipulated on a computer. Many of the mathematical assistants are based on

extensions of typed λ-calculus. See Section 6.2 for more information.

What this book is and is not about

None of the fascinating applications, mentioned above, of lambda calculus

with types are treated in this book. We will study the formalism for its

mathematical beauty. In particular this monograph focuses on mathematical

properties of three classes of typing for lambda terms.

Simple types, constructed freely from type atoms, cause strong normal-

ization, subject reduction, decidability of typability and inhabitation, unde-

cidability of lambda-definability. There turn out to be five canonical term

models based on closed terms. Powerful extension with respectively a dis-

criminator, surjective pairing, operators for primitive recursion, bar recur-

sion, and a fixed point operator are being studied. Some of these extensions

remain constructive, others are utterly non-constructive, and some will be

at the boundary of these two methods.

Recursive types allow functions to fit as input for themselves, losing strong

normalization (restored by allowing only positive recursive types). Typabil-

ity remains decidable. Unexpectedly, α-conversion, dealing with the hygienic

treatment of free and bound variables among recursive types, has interesting

mathematical properties.

Intersection types allow functions to take arguments of different types si-

multaneously. Under certain mild conditions this leads to subject conversion,

turning the filters of types of a given term into a lambda model. Classical

lattice models can be described as intersection type theories. Typability and

inhabitation now becomes undecidable, the latter being equivalent to unde-

cidability of lambda-definability for models of simple types.

A flavor of some of the applications of typed lambda calculus is given:

functional programming (Section 6.1), proof-checking (Section 6.2), and for-

mal semantics of natural languages (Section 6.4).

What this book could have been about

This book could have been also about dependent types, higher-order types

and inductive types, all used in some of the mathematical assistants. Origi-

nally we had planned a second volume to do so. But given the effort needed

to write this one, we will probably not do so. Higher-order types are treated

in a mathematically oriented style in Girard et al. (1989), and Sørensen and

Urzyczyn (2006). Research monographs on dependent and inductive types
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xxii Introduction

are lacking. This is an invitation to the community of the next generation

of researchers!

Some notational conventions

A partial function from a set X to a set Y is a collection of ordered pairs

f ⊆ X × Y such that ∀x∈X, y, y′ ∈Y.[〈x, y〉 ∈ f & 〈x, y′〉 ∈ f ⇒ y = y′].
The set of partial functions from a set X to a set Y is denoted by X�Y . If

f ∈ (X �Y ) and x∈X, then f(x) is defined , notation f(x)↓ or x∈ dom(f),

if for some y one has 〈x, y〉 ∈ f . In that case one writes f(x) = y. On the

other hand f(x) is undefined , notation f(x)↑, means that for no y ∈Y one

has 〈x, y〉 ∈ f . An expression E in which partial functions are involved, may

be defined or not. If two such expressions are compared, then, following

Kleene (1952), we write E1�E2 for

if E1↓, then E2↓ and E1 = E2, and vice versa.

The set of natural numbers is denoted by ω. The notation � is used

for “equality by definition”. Similarly ‘⇐⇒� ’. is used for the definition of

a concept. By contrast ::= stands for the more specific introduction of a

syntactic category defined by the Backus–Naur form. The notation ≡ stands

for syntactic equality (for example to remind the reader that the left hand

side was defined previously as the right hand side In a definition we do not

write ‘M is closed iff FV(M) = ∅’ but ‘M is closed if FV(M) = ∅’. The end

of a proof is indicated by ‘ ’.
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