Climate change has shaped life in the past and will continue to do so in the future. Understanding the interactions between climate and biodiversity is a complex challenge to science. With contributions from 60 key researchers, this book examines the ongoing impact of climate change on the ecology and diversity of life on earth. It discusses the latest research within the fields of ecology and systematics, highlighting the increasing integration of their approaches and methods. Topics covered include the influence of climate change on evolutionary and ecological processes such as adaptation, migration, speciation and extinction, and the role of these processes in determining the diversity and biogeographic distribution of species and their populations. This book ultimately illustrates the necessity for global conservation actions to mitigate the effects of climate change in a world that is already undergoing a biodiversity crisis of unprecedented scale.

TREVOR R. HODKINSON is Senior Lecturer in Botany at the School of Natural Sciences, Trinity College Dublin. He is Head of the Botany Molecular Laboratory and Assistant Curator of the Herbarium. He specialises in the research fields of molecular systematics, genetic resources and taxonomy.

MICHAEL B. JONES holds the Chair of Botany in the School of Natural Sciences, Trinity College Dublin. He is a plant ecophysiologist and his research focuses on the study of climate–plant interactions, particularly on the effects of climate on photosynthesis, growth and primary productivity.

STEPHEN WALDREN is Senior Lecturer in Botany and Curator of the Trinity College Dublin Botanic Garden. His research interests are in the areas of conservation biology and phylogeography.

JOHN A. N. PARNELL, currently Head of the School of Natural Sciences at Trinity College Dublin, is Professor of Systematic Botany and Curator of the Herbarium. His research interests are predominantly in the fields of plant taxonomy and systematics, working mainly on the floras of Ireland and Thailand.
The Systematics Association promotes all aspects of systematic biology by organising conferences and workshops on key themes in systematics, running annual lecture series, publishing books and a newsletter, and awarding grants in support of systematics research. Membership of the Association is open globally to professionals and amateurs with an interest in any branch of biology, including palaeobiology. Members are entitled to attend conferences at discounted rates, to apply for grants and to receive the newsletter and mailed information; they also receive a generous discount on the purchase of all volumes produced by the Association.

The first of the Systematics Association's publications, *The New Systematics* (1940), was a classic work edited by its then-president Sir Julian Huxley. Since then, more than 70 volumes have been published, often in rapidly expanding areas of science where a modern synthesis is required.

The Association encourages researchers to organise symposia that result in multi-authored volumes. In 1997 the Association organised the first of its international Biennial Conferences. This and subsequent Biennial Conferences, which are designed to provide for systematists of all kinds, included themed symposia that resulted in further publications. The Association also publishes volumes that are not specifically linked to meetings, and encourages new publications (including textbooks) in a broad range of systematics topics.

More information about the Systematics Association and its publications can be found at our website: www.systass.org.

Previous Systematics Association publications are listed after the index for this volume.
Contents

List of contributors .. page vii
Preface .. xi

Section 1 Introduction

1. **Integrating ecology and systematics in climate change research**
 T. R. Hodkinson ... 3

2. **Climate modelling and deep-time climate change**
 R. Caballero and P. Lynch 44

3. **The perils of addressing long-term challenges in a short-term world: making descriptive taxonomy predictive**
 R. M. Bateman ... 67

Section 2 Adaptation, speciation and extinction

4. **Global climate and extinction: evidence from the fossil record**
 P. J. Mayhew ... 99

5. **Long-term fluctuations in atmospheric CO₂ concentration influence plant speciation rates**
 J. C. McElwain, K. J. Willis and K. J. Niklas 122

6. **Wood anatomy and climate change**
 P. Baas and E. A. Wheeler 141

7. **Savanna biome evolution, climate change and the ecological expansion of C₄ grasses**
 Y. Bouchenak-Khelladi and T. R. Hodkinson 156

8. **Climate warming results in phenotypic and evolutionary changes in spring events: a mini-review**

9. **Terrestrial green algae: systematics, biogeography and expected responses to climate change**
 F. Rindi .. 201
Section 3 Biogeography, migration and ecological niche modelling

10 **Biodiversity informatics for climate change studies**
A. Culham and C. Yesson

11 **Climate envelope models in systematics and evolutionary research: theory and practice**
D. Rödder, S. Schmidtlein, S. Schick and S. Lötters

12 **Biogeography of *Cyclamen*: an application of phylolclimatic modelling**
C. Yesson and A. Culham

13 **Cenozoic climate changes and the demise of Tethyan laurel forests: lessons for the future from an integrative reconstruction of the past**
F. Rodríguez-Sánchez and J. Arroyo

14 **The impact of climate change on the origin and future of East African rainforest trees**
L. W. Chatrou, J. J. Wieringa and T. L. P. Couvreur

15 **Hybridisation, introgression and climate change: a case study of the tree genus *Fraxinus* (Oleaceae)**

Section 4 Conservation

16 **Assessing the effectiveness of a protected area network in the face of climatic change**
B. Huntley, D. G. Hole and S. G. Willis

17 **Documenting plant species in a changing climate: a case study from Arabia**
M. Hall and A. G. Miller

18 **A critical appraisal of the meaning and diagnosability of cryptic evolutionary diversity, and its implications for conservation in the face of climate change**
J. Bernardo

19 **Climate change and Cyperaceae**
D. A. Simpson, C. Yesson, A. Culham, C. A. Couch and A. M. Muasya

20 **An interdisciplinary review of climate change trends and uncertainties: lichen biodiversity, arctic–alpine ecosystems and habitat loss**
C. J. Ellis and R. Yahr

21 **Climate change and oceanic mountain vegetation: a case study of the montane heath and associated plant communities in western Irish mountains**
R. L. Hodd and M. J. Sheehy Skeffington

Index

Colour plate section appears between pages 308 and 309
Contributors

J. Arroyo, Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Spain
P. Baas, National Herbarium of the Netherlands, Leiden, the Netherlands
R. M. Bateman, Jodrell Laboratory, Royal Botanic Gardens, Kew and School of Geography, Earth and Environmental Sciences, University of Birmingham, UK
J. Bernardo, Department of Natural Resources, Cornell University, NY and Southern Appalachian Biodiversity Institute, Roan Mountain, TN, USA
Y. Bouchenak-Khelladi, Department of Botany, University of Cape Town, South Africa
R. Caballero, School of Mathematical Sciences, University College Dublin, Ireland
A. Caffarra, Department of Environmental Sciences, Fondazione E. Mach, Istituto Agrario San Michele all’Adige, Italy
L. W. Chatrou, Nationaal Herbarium Nederland and Biosystematics Group, Wageningen University, the Netherlands
C. A. Couch, Royal Botanic Gardens, Kew, UK
T. L. P. Couvreur, Institut de Recherche pour le Développement, Montpellier, France
A. Culham, School of Biological Sciences and The Walker Institute for Climate Change, University of Reading, UK
E. Diskin, School of Natural Sciences, Trinity College Dublin, Ireland
A. Donnelly, School of Natural Sciences, Trinity College Dublin, Ireland
G. C. Douglas, Kinsealy Research Centre, Teagasc, Dublin, Ireland
C. J. Ellis, Royal Botanic Garden Edinburgh, UK
F. Fernández-Manjarres, CNRS and Université Paris-Sud XI, Orsay and AgroParisTech, Paris, France
N. Frascaria-Lacoste, CNRS and Université Paris-Sud XI, Orsay and AgroParisTech, Paris, France
M. Hall, Centre for Middle Eastern Plants, Royal Botanic Garden Edinburgh, UK
R. L. Hodd, Botany and Plant Science, National University of Ireland, Galway, Ireland
T. R. Hodkinson, School of Natural Sciences, Trinity College Dublin, Ireland
D. G. Hole, School of Biological and Biomedical Sciences, Durham University, UK and Science and Knowledge Division, Conservation International, Arlington, VA, USA
LIST OF CONTRIBUTORS

B. Huntley, Ecosystem Science Centre, School of Biological and Biomedical Sciences, Durham University, UK

M. B. Jones, School of Natural Sciences, Trinity College Dublin, Ireland

C. T. Kelleher, National Botanic Gardens, Glasnevin, Dublin, Ireland

S. Lötters, Biogeography Department, Trier University, Germany

P. Lynch, School of Mathematical Sciences, University College Dublin, Ireland

P. J. Mayhew, Department of Biology, University of York, UK

J. C. McElwain, School of Biology and Environmental Science, University College Dublin, Ireland

A. G. Miller, Centre for Middle Eastern Plants, Royal Botanic Garden Edinburgh, UK

A. M. Muasya, Department of Botany, University of Cape Town, South Africa

K. J. Niklas, Department of Plant Biology, Cornell University, NY, USA

J. O’Halloran, Biological, Earth and Environmental Sciences, University College Cork, Ireland

B. F. O’Neill, School of Natural Sciences, Trinity College Dublin, Ireland

J. A. N. Parnell, School of Natural Sciences, Trinity College Dublin, Ireland

J. Peñuelas, Center for Ecological Research and Forestry Applications (CSIC), Campus Universitat Autònoma de Barcelona, Spain

A. Pletsers, School of Natural Sciences, Trinity College Dublin, Ireland

H. Proctor, School of Natural Sciences, Trinity College Dublin, Ireland

F. Rindi, Dipartimento di Scienze del Mare, Università Politecnica delle Marche, Ancona, Italy

F. Rodríguez-Sánchez, Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Spain

D. Rödder, Herpetology Department, Zoologisches Forschungsmuseum Alexander Koenig, Bonn and Biogeography Department, Trier University, Germany

S. Schick, Biogeography Department, Trier University, Germany

S. Schmidtlein, Vegetation Geography Department, Bonn University, Germany

M. J. Sheehy Skeffington, Botany and Plant Science, National University of Ireland, Galway, Ireland

D. A. Simpson, Royal Botanic Gardens, Kew, UK

T. Sparks, Fachgebiet für Ökoklimatologie, Technische Universität München, Germany and Institute of Zoology, Poznań University of Life Sciences, Poland and Department of Zoology, University of Cambridge, UK

R. Stirnemann, School of Natural Sciences, Trinity College Dublin, Ireland

M. Thomasset, School of Natural Sciences, Trinity College Dublin and Kinsealy Research Centre, Teagasc, Dublin, Ireland

S. Waldren, School of Natural Sciences, Trinity College Dublin, Ireland

E. A. Wheeler, Department of Wood and Paper Science, North Carolina State University, NC, USA
J. J. Wieringa, Nationaal Herbarium Nederland and Biosystematics Group, Wageningen University, the Netherlands

K. J. Willis, Department of Zoology, University of Oxford, UK

S. G. Willis, Ecosystem Science Centre, School of Biological and Biomedical Sciences, Durham University, UK

R. Yahr, Royal Botanic Garden Edinburgh, UK

C. Yesson, Institute of Zoology, Zoological Society of London, UK
Preface

The 21 chapters of this book are based on the theme of a Special Conference of the Systematics Association and the Linnean Society of London, held at Trinity College Dublin (TCD), Ireland, in September 2008. During the three-day Climate Change and Systematics conference, there were stimulating presentations, posters and discussions covering a broad range of ecological and systematic research relating to climate change; these influenced the shape and content of this volume. Papers were contributed by a number of conference delegates and by others subsequently invited to broaden the book's scope or address particular theoretical issues.

Consideration of the book's theme began when Richard Bateman, the then President of the Systematics Association, invited John Parnell and the School of Natural Sciences, TCD, to host a conference on the topic and to base a Systematics Association volume around its conclusions. The ideas were refined in discussions with Alan Warren, the then Systematics Association Special Volumes series editor. We are grateful to both for their input and encouragement. Two anonymous book proposal reviewers provided valuable content guidance and many anonymous reviewers also helped to improve the chapter contributions. We are particularly grateful for the manuscript preparation input of Sandra Velthuis of Whitebarn Consulting, who has worked long and hard to proofread chapters and standardise their format, to Hugh Brazier, the excellent copy editor, and to the production team at Cambridge University Press, who have been highly supportive and professional. Finally we thank all 57 contributing authors to the book, many of whom also peer-reviewed other chapters. We encourage all readers to support the activities of the Systematics Association (www.systass.org).

T.R. Hodkinson, M.B. Jones, S. Waldren and J.A.N. Parnell