Invasive Species

With climate change and increasing globalisation of trade and travel, the risks presented by invasive pests and pathogens to natural environments, agriculture and economies have never been greater, and are only increasing with time. Governments worldwide are responding to these increased threats by strengthening quarantine and biosecurity. This book presents a comprehensive review of risk-based techniques that help policy makers and regulators to protect national interests from invasive pests and pathogens before, at and inside national borders. Selected from the research corpus of Australia and New Zealand’s Centre of Excellence for Biosecurity Risk Analysis, this book provides solutions that reflect scientific rigour coupled with practical, hands-on applications. Focussing on surveillance, stochastic modelling, intelligence gathering, decision making and risk communication, the contents combine the strengths of risk analysts, mathematicians, economists, biologists and statisticians. The book presents tested scientific solutions to the greatest challenges faced by quarantine and biosecurity policy makers and regulators today.

Andrew P. Robinson is Reader and Associate Professor in Applied Statistics, and Director of the Centre of Excellence for Biosecurity Risk Analysis (CEBRA), at the University of Melbourne. He works on biosecurity at national borders, inspection surveillance systems and performance metrics for regulatory inspectorates.

Terry Walshe is Decision Scientist at the Australian Institute of Marine Science. His research deals with the intersection of technical and social dimensions of marine science and marine management.

Mark A. Burgman is Professor of Risk Analysis and Environmental Policy at the Centre for Environmental Policy, Imperial College, London, United Kingdom. He works on ecological modelling, conservation biology and risk assessment.

Mike Nunn is Research Program Manager at the Australian Centre for International Agricultural Research (ACIAR). He has particular interests in epidemiology, risk analysis, emerging diseases, zoonoses, nutrition-sensitive agriculture and strategic foresight.
Invasive Species

Risk Assessment and Management

Edited by

ANDREW P. ROBINSON
School of Mathematics and Statistics, University of Melbourne, Victoria, Australia

TERRY WALSHE
Australian Institute of Marine Science, Queensland, Australia

MARK A. BURGMAN
Centre for Environmental Policy, Imperial College, London, United Kingdom.

MIKE NUNN
Australian Centre for International Agricultural Research, Australian Capital Territory, Australia
Contents

- **List of Contributors**
- **Foreword: Towards Evidence-Based and Risk-Weighted Strategies for Biosecurity**
 David M. Richardson

List of Contributors

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The Allocation of Inspection Resources</td>
<td>Owen Jones, Andrew P. Robinson, Martin Shield and Jessica Sibley</td>
</tr>
<tr>
<td>2</td>
<td>Tools for Designing and Evaluating Post-Border Surveillance Systems</td>
<td>Susan M. Hester, Cindy E. Hauser and John M. Kean</td>
</tr>
<tr>
<td>3</td>
<td>Control Charts for Biosecurity Monitoring and Surveillance</td>
<td>David R. Fox</td>
</tr>
<tr>
<td>4</td>
<td>Open-Source Intelligence Gathering and Open-Analysis Intelligence for Biosecurity</td>
<td>Geoff Grossel, Aidan Lyon and Mike Nunn</td>
</tr>
<tr>
<td>5</td>
<td>Predicting Distributions of Invasive Species</td>
<td>Jane Elith</td>
</tr>
<tr>
<td>6</td>
<td>Mapping Risks and Impacts of Invasive Alien Species with Dynamic Simulation Models</td>
<td>Denys Yemshanov, Frank H. Koch, John W. Coulston and William D. Smith</td>
</tr>
<tr>
<td>7</td>
<td>Models for Understanding Disease Dynamics</td>
<td>Michael P. Ward, M. Graeme Garner, Joanne M. Potts and Brendan D. Cowled</td>
</tr>
<tr>
<td>8</td>
<td>Bayesian Networks for Import Risk Assessment</td>
<td>Ann E. Nicholson and Kevin B. Korb</td>
</tr>
<tr>
<td>9</td>
<td>Getting the Message Right: Tools for Improving Biosecurity Risk Communication</td>
<td>Jane Gilmour, Ruth Beilin, Tamara Sysak and Marta Hernández-Jover</td>
</tr>
<tr>
<td>10</td>
<td>Cost–Benefit Analysis for Biosecurity Decisions</td>
<td>Tom Kompas, Tuong Nhu Che, Pham Van Ha and Hoang Long Chu</td>
</tr>
<tr>
<td>11</td>
<td>Valuing Protection against Invasive Species Using Contingent Valuation</td>
<td>John Rolfe and Jill Windle</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Management of Invasive Species: Info-Gap Perspectives</td>
<td>266</td>
</tr>
<tr>
<td></td>
<td>Yakov Ben-Haim</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Decisions with Relative Robustness</td>
<td>287</td>
</tr>
<tr>
<td></td>
<td>Colin J. Thompson</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Optimising Resource Allocation</td>
<td>294</td>
</tr>
<tr>
<td></td>
<td>Cindy E. Hauser and Tracy M. Rout</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Value of Information Analysis as a Decision Support Tool for Biosecurity</td>
<td>308</td>
</tr>
<tr>
<td></td>
<td>Michael C. Runge, Tracy M. Rout, Daniel A. Spring and Terry Walshe</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Declaring Eradication of an Invasive Species</td>
<td>334</td>
</tr>
<tr>
<td></td>
<td>Tracy M. Rout</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Surveillance for Detection of Pests and Diseases: How Sure Can We Be of Their Absence?</td>
<td>348</td>
</tr>
<tr>
<td></td>
<td>Tony Martin</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Some Questions to Ask Yourself</td>
<td>385</td>
</tr>
<tr>
<td></td>
<td>Rob Cannon</td>
<td></td>
</tr>
</tbody>
</table>

Index 407
Contributors

Ruth Beilin
School of Ecosystem and Forest Sciences, University of Melbourne,
Parkville, Victoria, Australia

Yakov Ben-Haim
Faculty of Mechanical Engineering, Technion, Haifa, Israel

Mark A. Burgman
Centre for Environmental Policy, Imperial College, London, United Kingdom

Rob Cannon
Australian Government Department of Agriculture and Water Resources
(Retired), Canberra, Australian Capital Territory, Australia

Tuong Nhu Che
Crawford School of Public Policy, Australian National University, Canberra,
Australian Capital Territory, Australia

Hoang Long Chu
Crawford School of Public Policy, Australian National University, Canberra,
Australian Capital Territory, Australia

John W. Coulston
USDA Forest Service, Southern Research Station, Knoxville, Tennessee, USA

Brendan D. Cowled
Ausvet Animal Health Services, East Toowoomba, Queensland, Australia

Jane Elith
School of BioSciences, University of Melbourne, Parkville, Victoria, Australia

David R. Fox
Environmetrics Australia Pty. Ltd., Beaumaris, Victoria, Australia
Contributors

M. Graeme Garner
Australian Government Department of Agriculture and Water Resources, Canberra, Australian Capital Territory, Australia

Jane Gilmour
Research Associate, Centre of Excellence for Biosecurity Risk Analysis (CEBRA), School of Biosciences, University of Melbourne Parkville, Victoria, Australia

Geoff Grossel
Australian Government Department of Agriculture and Water Resources, Canberra, Australian Capital Territory, Australia

Pham Van Ha
Crawford School of Public Policy, Australian National University, Canberra, Australian Capital Territory, Australia

Cindy E. Hauser
School of BioSciences, University of Melbourne, Parkville, Victoria, Australia

Marta Hernández-Jover
School of Animal & Veterinary Science, Charles Sturt University, Wagga Wagga, New South Wales, Australia

Susan M. Hester
Centre of Excellence for Biosecurity Risk Analysis (CEBRA), University of New England, Armidale, New South Wales, Australia

Owen Jones
School of Mathematics and Statistics, University of Melbourne, Parkville, Victoria, Australia

John M. Kean
AgResearch Limited, Ruakura Research Centre, Hamilton, New Zealand

Frank H. Koch
Department of Forestry and Environmental Resources, North Carolina State University and USDA Forest Service, Eastern Forest Environmental Threat Assessment Center, Asheville, North Carolina, USA

Tom Kompas
Centre of Excellence for Biosecurity Risk Analysis (CEBRA), University of Melbourne, Parkville, Victoria, Australia
Contributors

Kevin B. Korb
School of Information Technology Monash University, Clayton, Victoria, Australia

Aidan Lyon
Department of Philosophy, University of Maryland, College Park, Maryland, USA

Tony Martin
Formerly Department of Agriculture and Food, Bunbury, Western Australia

Ann E. Nicholson
School of Information Technology, Monash University, Clayton, Victoria, Australia

Mike Nunn
Australian Centre for International Agricultural Research, Canberra, Australian Capital Territory, Australia

Joanne M. Potts
The Analytical Edge Pty. Ltd., Blackmans Bay, Tasmania, Australia

David M. Richardson
Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa

Andrew P. Robinson
Centre of Excellence for Biosecurity Risk Analysis (CEBRA), University of Melbourne, Parkville, Victoria, Australia

John Rolfe
School of Business and Law, Central Queensland University, North Rockhampton, Queensland, Australia

Tracy M. Rout
Environmental Decisions Group, University of Queensland, Brisbane, Queensland, Australia

Michael C. Runge
USGS Patuxent Wildlife Research Center, Laurel, MD

Martin Shield
Connected Analytics, Melbourne, Victoria, Australia
x

Contributors

Jessica Sibley
Australian Government Department of Agriculture and Water Resources, Canberra, Australian Capital Territory, Australia

William D. Smith
Formerly USDA Forest Service, Southern Research Station, Asheville, North Carolina, USA

Daniel A. Spring
Centre of Environmental and Economic Research, The University of Melbourne, Victoria, Australia.

Tamara Sysak
School of Social Sciences, University of the Sunshine Coast, Sunshine Coast, Queensland, Australia

Colin J. Thompson
School of Mathematics and Statistics, University of Melbourne, Victoria, Australia

Terry Walshe
Australian Institute of Marine Science, Townsville, Queensland, Australia

Michael P. Ward
Faculty of Veterinary Science, University of Sydney, Camden, New South Wales, Australia

Jill Windle
School of Business and Law, Central Queensland University, North Rockhampton, Queensland, Australia

Denys Yemshanov
Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, Sault Ste. Marie, Ontario, Canada
Foreword
Towards Evidence-Based and Risk-Weighted Strategies for Biosecurity

Globalisation has radically increased the magnitude and scale of the human-mediated movement of species. Species’ ranges are no longer defined by natural dispersal mechanisms and biogeographical barriers. International travel and commerce have developed new trade routes, markets and products, and rapid climate change and associated factors continue to shape existing pathways and open new ones (Essl et al., 2015). The overall extent and magnitude of impacts is increasing rapidly, as is the diversity of types of impact and problems associated with the framing of issues and implicit assumptions regarding impacts of biological invasions (Essl et al., 2016).

The interest in understanding and managing the phenomenon of biological invasions has exploded in recent decades. Charles Elton’s 1958 book *The Ecology of Invasions by Animals and Plants* is widely acknowledged as the starting point for focussed scientific attention on biological invasions (Richardson & Pyšek, 2007). In the 1980s, a major international programme under the auspices of the Scientific Committee on Problems of the Environment (SCOPE) was the impetus for a major upsurge in interest in invasions. Substantial progress has been made in understanding the ‘nuts and bolts’ of biological invasions (Richardson, 2011b). Despite many advances in invasion science, however, the magnitude and complexity of problems associated with biological invasions continue to escalate in all parts of the world (Richardson, 2011a).

The applied side of invasion science has morphed into the domain of biosecurity in which biogeography and ecology are important but where economic and socio-political issues increasingly dominate agendas (Figure 1). Biosecurity is a relatively new term, entering the scientific lexicon only in the late 1980s and the *Oxford English Dictionary* in 2005 (Hulme, 2012a). Various definitions exist, but in its broadest sense biosecurity covers ‘all activities aimed at managing the introduction of new species to a particular region and mitigating their impacts should they become established…, [including] the regulation of intentional (including illegal) and unintentional introductions and the management of weeds and animal pests by central and local government, industry and other stakeholders’ (Hulme, 2012a, p. 304). Emerging biosecurity strategies typically include international treaties and standards, cooperative efforts, inspections in host countries and at ports of entry, quarantine, intelligence and treatment of shipments (Elferink & van der Weijden, 2011).
Most countries have legislation and policies aimed at biosecurity, but the magnitude of the problem is so large and the challenges of dealing with all the many interacting drivers of biological invasions are so daunting that only a few wealthy countries are devoting anything near the resources required to systematically reduce the rate and impacts of biological invasions. How much should a country spend to reduce problems associated with invasive species? The economics of preventing invasions is receiving much attention. Results of several studies suggest that expensive interventions are justified (e.g. Leung et al., 2002; Keller et al., 2007; Williams et al., 2010), but other authors question whether currently applied risk assessment methods are accurate enough to achieve their aim (e.g. Hulme, 2012b). A key aspect of the complexity relates to pathways of introduction and dissemination of non-native species. In most cases, we simply know too little about introduction pathways to apply effective management (Essl et al., 2015). Even where we do know the most important pathways, implementing effective interventions is becoming increasingly complicated. For example, the World Trade Organization requires that any trade
restrictions invoked for biosecurity purposes must be science based, and should be ‘least trade restrictive’ (Shine et al., 2000). The science on which to base decisions on achieving a balance between ‘least trade restrictive’ and what is most effective to protect people and the environment is still under development. Countries are free to set their own levels of acceptable risk. Substantial work has been done recently to apply the latest advances in risk assessment methods in the biosecurity arena, but major advances in this sphere are in many cases being thwarted by the inherent complexity of the many interacting processes that mediate progress along the introduction–naturalisation–invasion continuum (Blackburn et al., 2011). The lack of objective criteria for assessing the risk of different categories of impacts has also hindered the formulation of robust policies and protocols (Blackburn et al., 2014). A promising approach in this regard is the Environmental Impact Classification for Alien Taxa (EICAT) framework which proposes using a scheme for evaluation impacts of invasive species that is similar to that applied by the International Union for Conservation of Nature (IUCN) to evaluate the threat of extinction of native species in The IUCN Red List of Threatened Species (www.iucnredlist.org; Hawkins et al., 2015). Widespread adoption of this scheme could pave the way for a standardised approach for reporting impacts, thereby alleviating some of the current problems in the implementation of standards.

This book presents a timely and authoritative review of the fundamental challenges that face us in implementing effective and sustainable biosecurity measures, drawing largely on the particular challenges facing Australia. Contributions deal with state-of-the-art methods that are available to inform objective decision making. These include fundamental assessments to evaluate the quality and value of information, options for predicting distributions of non-native species, models for understanding the dynamics of diseases, cost–benefit analyses for biosecurity decisions, and key requirements for surveillance and monitoring. Of huge importance, and well covered in the book, is the key challenge of ensuring that risks and potential options for biosecurity are accurately communicated to all stakeholders.

I greatly enjoyed reading the chapters in this volume. I have no doubt that the contributions will result in improved management of one of the most challenging problems of our time.

DANIEL M. RICHARDSON

References

