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1 The Allocation of Inspection 
Resources

Owen Jones, Andrew P. Robinson, Martin Shield and Jessica Sibley

1.1 Introduction

Inspection is carried out by biosecurity protection authorities to detect and exclude 

biosecurity contaminations, by customs services to intercept illegal weapons and 

drugs, by taxation organisations to verify taxation returns and by environmental 

protection authorities to determine the levels of pollutants in public goods. In this 

chapter, we focus on inspections performed by regulators to ensure that a process 

complies with regulations. Our speciic interest is border inspections for biosecurity 

contaminations.

We deine inspection as the examination of a unit to determine whether or not 

it is compliant with relevant regulations. In the present context, an inspection will 

determine whether the unit contains biosecurity risk material. A typical unit could 

be an international passenger, a sea container or a pallet of goods. Inspection usu-

ally involves examining the unit and any accompanying packaging, and depending 

on the nature of the unit, inspection may also involve the examination of a sam-

ple taken from the unit. For example, the inspection of a consignment of oranges 

might focus on a random sample of 600 oranges, and the inspection of a consign-

ment of coffee beans might focus on one or more samples of coffee beans extracted 

from the container by means of a probe.

We will assume that units arrive sequentially and that there is no logical demarca-

tion in the low of arrivals that could be used to deine a collection of units to serve 

as a basis for structuring an inspection system. Therefore, although traditional 

methods may be used to determine the procedure for sampling from a unit such 

as a container, they are not appropriate for deciding how many or which units to 

inspect. Rather, as each unit arrives, a decision must be made on whether or not 

to inspect it. We will suppose that our inspection criteria are updated after every  

N -th arrival, for some ixed N . In particular, after every N -th arrival, we update our  

estimate of the non- compliance rate and adjust the frequency of our inspections 

accordingly.

The frequency of inspections is determined by three requirements: to intercept 

non- compliant units, to estimate the contamination level and to deter maleicent 

agents. We will assume that the only data that we have on the non- compliance rate 

of arriving units are the results of previous inspections. Moreover, we do not wish 

to use data from more than N  past arrivals because we want our estimates to be 
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current. Thus the frequency of inspections directly affects the quality of our esti-

mates. When contaminated units are identiied, they are destroyed, treated or re- 

exported so that they do not present a biosecurity threat. The speciic action taken 

will not affect our analysis here. Finally, although it is clear that when inspections 

are well publicised and the penalties for infraction are suficient, the knowledge of 

inspection may inluence the behaviour of importers; we make no attempt to model 

this feedback here.

The frequency of inspections will generally increase with the estimated rate of 

contamination, although see Cannon (2009) and Press (2009). The frequency of 

inspections will therefore be low when the estimated rate is negligible but should 

not be allowed to decrease so much that it becomes impossible to detect an import-

ant increase in the contamination frequency within a reasonable time frame. When 

the sampling rate is low, detecting a contaminated unit can cause a spike in the 

estimate of the contamination rate that may misleadingly portend a change in the 

baseline rate. A further consideration is that, assuming we update our estimated 

contamination rate after every N - th arrival, our inspection regime should allow 

for a rapid increase in the inspection frequency if  there is an important increase in 

the number of non- compliant units detected. A brief  review of inspection resource 

allocation strategies can be found in Robinson et al. (2011); see also Cannon (2009).

Robinson et  al. (2008, 2011) developed the import risk inspection sampling 

(IRIS) algorithm with the goal of determining an inspection level that relects the 

joint needs to intercept non- compliant units and maintaining adequate estimates 

of contamination levels. The IRIS algorithm allows the manager to choose the 

length N  of  the review period, but does not allow changing the inspection fre-

quency between the review periods if  there is evidence of an increase in the con-

tamination frequency. In this chapter, we show how to combine the IRIS algorithm 

with the different sampling or alert modes used by Dodge (1943) and Dodge and 

Torrey (1951) in the continuous sampling plan (CSP) and its variants. The com-

bined algorithm retains the convenience of regular review periods while including 

mechanisms to trigger periods of high- frequency inspections.

This chapter is structured as follows. We develop a conceptual framework for the 

inspection process in Section 1.2. We review and extend the IRIS algorithm in Section 

1.3. We introduce the CSP in Section 1.4 and discuss how to combine it with IRIS and 

why this might be useful. In Sections 1.2, 1.3 and 1.4, we assume that we are acting 

on a single homogeneous pathway of units. In Section 1.5 we consider the problem 

of pathways that are too small to get adequate estimates of the contamination level, 

and suggest a way of combining pathways using our IRIS– CSP hybrid algorithm. 

We then test our approach using a simulation experiment based on inspection data.

1.2 Conceptual Framework

In this section we present a conceptual framework for the inspection process that 

we will use to describe our inspection algorithms. Here, we use the vocabulary 
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and context most suited to biosecurity inspection, but the principles are quite 

general.

We deine an inspection unit as the entity upon which inspection is performed. 

Diverse kinds of units are of interest, and the method for inspection of each 

depends on the characteristics of the unit. Examples of units include people, con-

signments of imported goods and containers of commodities. Inspection units are 

analogous to sampling units in sampling theory.

We deine a pathway as a sequence of units that are deemed to be similar by 

the inspectorate and over which the inspectorate has some regulatory authority. 

Deining a pathway as a collection of like units is subjective because there are numer-

ous hierarchical levels of collections of units. For example, a pathway could com-

prise all air passengers, all passengers who arrive from a certain departure point or 

all passengers who have been out of the country for more than six weeks. Similarly, 

in the case of imported coffee beans, a pathway could comprise all consignments 

of coffee beans, all consignments from a certain supplier, all consignments from a 

speciic country, all consignments to a particular importer or any combination of 

these. Pathways are analogous to ininite populations in sampling theory.

We assume that inspection of a unit yields a binary result: the unit is deemed to 

be contaminated (non- compliant) or not contaminated (compliant). We also sup-

pose that the effectiveness, w, of  inspections is known and constant for any given 

pathway. This means that a non- compliant unit that is inspected will be detected 

with a known probability w. In general, this probability will not be known and must 

be estimated using a procedure called an endpoint survey.

Consider the k- th unit that arrives at the inspection point from a given pathway. 

We deine the approach rate, pk, as the probability that the unit is non- compliant. 

The pk is indexed by k  because, in general, we allow it to change over time, although 

in practice we expect any change to be gradual, perhaps with occasional jumps. We 

deine the sampling rate, sk, as the probability that the k-th unit is inspected, and 

we deine the leakage rate, rk, as the probability that the unit is non- compliant and 

allowed past the inspection point. Thus, r ws pk k k= −( )1 . Broadly speaking, our goal  

is to choose a value of sk that is as small as possible while keeping rk at an acceptable 

level. An important feature of the IRIS algorithm is that when determining sk, it 

speciically makes allowance for uncertainty in our estimate of rk. It is also import-

ant to know how quickly the sampling rate increases when there is an increase in pk,  

to which end we incorporate the CSP methodology.

Our deinition of the leakage rate gives the probability that a unit arriving at the 

inspection point is non- compliant but still gets through. We could also consider 

the probability that a unit that leaves the inspection point is non- compliant (the 

post- inspection leakage rate). These probabilities will be the same in the case of 

rectifying inspections, in which detected non- compliant units are made compliant 

and then released. In the case of non- rectifying inspections, the post- inspection 

leakage rate will always be higher than the leakage rate. However, when pk is small, 

which is often the case, the two will be close because the proportion of units that 

are rejected will be small.
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We collect units into groups of sizes N N1 2, ,…, where the irst N2 units to arrive 

are considered to belong to group 1, the next N2 to group 2, and so on. We assume 

that the group sizes are known in advance. The groups could be natural groupings, 

such as containers on a ship or passengers on an aeroplane, or they could be units 

that arrive during a given time period, say every three months. In the latter case, the 

group sizes can only be estimated ahead of time and will not be known for certain. 

The accuracy of these estimates is not of particular importance when we look at the 

performance of our inspection algorithms (see Section 1.5.1).

To measure performance we use the long- run average leakage rate, either the-

oretical or estimated. For a given approach rate p, the average outgoing quality, 

AOQ(p), is deined as the long- run average leakage rate when the approach rate 

p pk =  is constant, under the assumption that units are independent and inspections 

are perfectly accurate ( )w =1 .1 For a speciic data sample, the estimated long- run 

average leakage rate is the sample outgoing quality (SOQ). Note that by long- run 

average leakage rate we mean the proportion of the given pathway that is non- 

compliant and undetected.

1.3 The IRIS Algorithm

Throughout this section, we assume that the approach rate p pk =  is constant. The 

IRIS algorithm is an ad hoc procedure designed to ensure that the leakage rate is 

kept below a set level with a given probability as long as the approach rate does not 

increase. Even when p is very small, we inspect frequently enough that our estimate 

of p remains acceptably accurate.

Suppose that in the irst block of N1 units there were n1 inspections that found x1 

non- compliant units, giving us a point- estimate for p of  ˆ / ( )p x wn1 1 1= . Our aim is 

to choose n2, the number of units to inspect from the next block of size N2.

We start by adding a positive bias to p̂1 to allow for error and uncertainty in 

our estimate. Let ˆ ˆ*p p= +1 ε be our biased estimate. Next, suppose that we sample 

n2 units from the second block of N2 units and ind X2 non- compliant units. Let 

p X wn2 2 2= / ( ) be the estimate of p obtained from these inspections, then EP p2 =  

and VarP p wp wn2 21= −( ) / ( ). Given these,2 we adopt the following model for p 

using a beta distribution:

 P p w n p w n w
p w

w p
~ ( . ,( ) . )

( )
.* *

*

*

beta where 



′ + − ′ + ′ =
−

−
2 20 5 1 0 5

1

1
 (1.1)

 1	 The	term	average	outgoing	quality	was	irst	used	by	Dodge	(1943),	who	also	used	the	average	outgoing	
quality	limit,	AOQL	=	maxpAOQ(p),	to	give	an	overall	measure	of	the	effectiveness	of	an	inspection	pol-
icy.	Lieberman	(1953)	went	a	step	 further	and	proposed	 the	unrestricted	average	outgoing	quality	 limit,	
UAOQL,	which	is	an	upper	bound	for	the	long-	run	average	leakage	rate	for	any	sequence	of	pk, not just 

constant	sequences.
 2	 We	are	treating	the	sample	units	as	independent	and	identically	distributed	observations	and	not	as	a	sample	
from	a	inite	population	of	size	N2.	This	is	because	we	are	estimating	the	long-	run	approach	rate,	not	just	the	
approach	rate	for	the	second	sampling	period.
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Under this model, conditional on ˆ ,*p P has mean

 
ˆ*p

w n

+

+
=

′

δ

δ
δ

1 2

1

2 2

where  (1.2)

and variance.

 
( )( )

( ) ( )

( ) (* * * * *p p

w n

p p

w n

p    + − +

′ + +
=

−

′
+ ′ =

−δ δ

δ δ
δ

1

1 2 1 4

1 1

2
2

2

ww p

wn
O


* )

( ).
2

+ ′ ′δ δ δwhere =  (1.3)

The δ term is included so that, even if  ˆ*p  is very small, P has a mean and variance 

bounded away from 0.

Given P, our estimate of the leakage rate, r, for the next block is R ws P= −( )1 , 

where s n N= 2 2/  is the proportion of the next block to be sampled. We take as our 

(positively biased) point estimate of r the 100 1 0
0( )− α  point of R, where α is speci-

ied by the manager, for  example 0.10. That is, if  betainv is the inverse of the beta 

density,

 ˆ ( ) betain v( , ˆ . ,( ˆ ) . ).* *r ws p w n p w n2 2 21 1 0 5 1 0 5= − − ′ + − ′ +α  (1.4)

This construction allows the manager to apply a level of surety to the estimate, pro-

viding a platform for risk- averse inspection strategies if  the consequences of fail-

ure are large. Writing s n N= 2 2/  we see that by putting r̂ r2 = , where r is our target 

leakage rate, we get an equation for n2. Equation 1.4 is easily solved numerically by 

using a root- inding algorithm.

When the IRIS algorithm was originally introduced by Robinson et al. (2008, 

2011), they suggested that ε, the bias added to p̂1 to get ˆ*p , should be such that ˆ*p  

corresponds to a percentage point from a beta distribution with mean approxi-

mately p̂1 and variance proportional to 1 2/ n . However, if  ˆ*p  depends on n2, then Eq. 

1.4 and ˆ*p  need to be solved iteratively. That is, we choose a ˆ*p  to start then solve 

Eq. 1.4 to get n2, which gives us a new ˆ*p . Using this ˆ*p , we solve Eq. 1.4 again to get 

a new n2 and thus a new ˆ*p . We continue until ˆ*p  and n2 converge. We have included 

ε  in our description because it is present in the original IRIS algorithm. However, 

the algorithm already includes a mechanism to deal with the uncertainty in our 

estimates, namely the α in Eq. 1.4. In practice, adding ε  to p̂1 does not add a great 

deal to the robustness of the method and we now suggest that it can be omitted.

1.3.1 Bayes– IRIS

Although the IRIS algorithm produces reasonable sampling rates in operational 

settings (Robinson et al., 2011), the ad hoc nature of the algorithm makes it dif-

icult to justify theoretically. In the remainder of this section we use a Bayesian 

approach to derive an analogous algorithm from irst principles. We call the result-

ing algorithm Bayes– IRIS, and although it results in a rather different equation for 

n2, it produces solutions similar to those of the IRIS algorithm in many operational 

settings.
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We suppose that the irst review period has just inished and we are planning 

for the second review period. In the irst review period, we sampled n1 out of N1 

units and found x1 non- compliant units. Our goal is to choose n2, the number of 

units to sample from the next N2, so that the leakage rate is kept below a threshold 

r with probability 1− α. We will suppose initially that inspections are error free, 

that is, w =1.

As before, we start with an estimate of p. We use a Bayesian approach so that 

our estimate takes the form of a distribution. We deliberately choose not to use any 

information from before the irst review period when estimating p. This is because 

we want our estimate to be current and capable of responding quickly to changes in 

the approach rate. Let P0 be a distribution that represents our estimate at the start 

of the irst review period based on no information. In Bayesian terminology, P0 is 

called a non- informative prior. We use the usual choice of non- informative prior for 

a probability, the beta(0.5, 0.5) distribution.3

 P0 0 5 0 5~ ( . , . ).beta  (1.5)

At the end of the irst review period, we update our distribution for p based on the 

observed number of compliant and non- compliant units. We call this P1 (the poster-

ior distribution), and standard calculations give us

 P x n x1 1 1 10 5 0 5~ ( . , . ).beta + − +  (1.6)

Now suppose that we take a sample of size n2 from the N2 units that arrive during 

the second review period. Let X2 be the number of non- compliant units in that  

sample. If  we knew p, then X2 would have a binom ( , )n p2  distribution. Instead, 

using our distribution P1 for p, we obtain the distribution of X2 by integrating the 

binomial distribution over the possible values of p. The resulting distribution is 

known as the beta- binomial. We write X n x n x2 2 1 1 10 5 0 5~ ( , . , . )beta-binom + − + ,  

and we have

 P ( )
( . , . )

( . ,
X x

n

x

x x n x n x

x n
2 2

2

2

2 1 2 2 1 1

1 1

0 5 0 5

0 5
= =







+ + − + − +

+

β

β −− +x1 0 5. )
, (1.7)

where β(a, b) is the beta function evaluated at (a, b).

Given X2, the leakage rate is R n N X n
n N

X2 2 2 2 2

2 2

21
1 1

= − = −






( / ) / , and 

requiring P ( )R r2 > ≤ α is equivalent to requiring P X
rn N

N n
2

2 2

2 2

>
−







≤ α. Our sam ple

 

size for the second sampling period is the smallest n2 for which

 3	 Note	that	some	authors	such	as	Tuyl	et	al.	(2009)	argue	that	beta(1,	1)	is	a	better	choice	(the	uniform	prior).	
However,	the	beta	(0.5,	0.5)	prior,	which	is	an	example	of	a	Jeffreys	prior,	is	still	the	most	commonly	used.	
Practically,	the	difference	is	apparent	only	when	we	have	a	very	small	sample	size,	n1,	in	which	case	the	
Jeffreys	prior	favours	extreme	probabilities	(closer	to	0	or	1)	more	than	the	uniform	prior	does.
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n

x

x x n x n x

x

rn N N n
2

20

2 1 2 2 1 1

2

2 2 2 2 0 5 0 5





+ + − + − +

=

−

∑
/( )

( . , . )

(

β

β xx n x1 1 10 5 0 5
1

+ − +
≥ −

. , . )
,α  (1.8)

where the truncated brackets around the upper limit of the sum mean to round 

down to the next integer.

1.3.2 Bayes– IRIS with Imperfect Inspections

When dealing with imperfect inspections, the Bayesian analysis in Section 1.3.1 

becomes more complicated. As before, we use P0 0 5 0 5~ ( . , . )beta  as a prior for p at 

the start of the irst review period. In addition, we suppose that w, the probability 

of successfully identifying a non- compliant unit being inspected, has the following 

prior distribution that is independent of P0

 1 0−W a bw w~ beta ( , ). (1.9)

At the end of the irst review period, having observed x1 non- compliant units from 

n1 inspected units, p and w have the following joint posterior density (Gaba & 

Winkler, 1992):

 
f p w x n c f p n y y

f w n

P W y

y

n x

1 1

1 1

1 1 1

0

1

0 5 0 5

1

, ( , , ) ( ; . , . )

( ;

= − + +

× −

=

−

∑ β

β −− − + +x y a x bw w1 1, ),

 (1.10)

where f a bβ ( ; , )⋅  is the beta( )a b,  density, c a ay y zz

n x
=

=

−

∑/ ,
0

1 1
 and

 a
n x

y
n y y n x y a x by w w=

−





− + + − − + +
1 1

1 1 1 10 5 0 5β β( . , . ) ( , ). (1.11)

In the sum, we can interpret y as the true number of compliant units from the n1 

that were sampled.

In the case where p is small and w  is known exactly, the posterior of p is approxi-

mately gamma distributed (Johnson & Gastwirth, 1991):

 P x w n x1 1 1 1≈ − −gamma( +0.5, ) 0.5).(  (1.12)

Given a distribution for P1, we can again obtain a distribution for X2 by integrating 

the binomial distribution over the possible values of p. Again, by ixing w  and sup-

posing p to be small, we get

 P( )
( ( ) . )

( ( ) .

.

X x
n

x

w n x

n x w n x

x

2 2

2

2

1 1
0 5

2 2 1 1

0 5

0 5

1

= ≈






− −
− + − −

+

))

( . )

( . )
,

.x x

x x

x1 2 0 5

1 2

1

0 5

0 5+ +

+ +
+

Γ
Γ

 (1.13)

where Γ( )a  is the gamma function evaluated at a. (Note that this is not a true 

distribution because summing the right- hand side over x n2 20= ,...,  does not 

give 1.  The approximation is, nonetheless, reasonable for small x2.) Putting 
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R n N X n2 2 2 2 21= −( / ) /  and requiring P( )R r2 > ≤ α, we can calculate n2 as before. 

Our sample size for the second sampling period is the smallest n2 for which

 
n

x

w n x

n x w nx

rn N N n x
2

20

1 1
0 5

2 22

2 2 2 2 10 5





− −

− +=

− +

∑
/( ) .( ( ) . )

( ( 11 1
0 5

1 2

10 5

0 5

0 5
1

1 2− −

+ +

+
≥ −

+ +x

x x

xx x) . )

( . )

( . )
.

.

Γ

Γ
α  (1.14)

1.4 The CSP Algorithm

The IRIS algorithm allows for periodic updating of the sampling rate, and in par-

ticular makes sure that the sampling rate does not drop too low when few non- 

compliant units are detected, but it does not respond quickly to a sudden increase 

in the non- compliance rate. In contrast, the CSP is designed to increase the sam-

pling rate quickly if  a cluster of non- compliant units is detected, and then reduce 

it again if  the non- compliance proves to be short lived. The CSP was introduced 

by Dodge (1943) and later extended by Dodge and Torrey (1951) and Govindaraju 

and Kandasamy (2000). We present a general description of the CSP that covers 

most schemes, including the multilevel plans of Lieberman and Solomon (1955).

We suppose that we have K ≥ 2 states that represent how alert we are to non- 

compliant units, with state 1 the least alert and state K  the most alert. For each state 

k , we have a sampling rate fk, a window length gk (also called a clearance number), 

and compliance numbers ck
+ and ck

− that are used to determine when to change to a 

different alert level. If  a unit arrives while we are in state k , we will inspect it with 

probability fk. If  we are in state k  and ck
+ or more of the previous gk items inspected 

in state k  are non- compliant then we increase the alert level (by one or more levels). 

If  ck
− or fewer of the previous gk items inspected in state k  have been non- compliant 

then we decrease the alert level (by one or more levels). We can increase the alert 

level after only ck
+ inspections, but we need at least gk before we can decrease it. 

Lieberman and Solomon (1955) restrict themselves to the case where ck
− = 0, and 

suppose that changes in state are by just one level at a time.

In Tables 1.1 to 1.3 we give details for some CSP algorithms. Here, the Up destin-

ation is the state you move to when increasing the alert level and the Down destin-

ation is the state you move to when decreasing the alert level. Values for the AOQ are 

taken from Stephens (1995) and give the theoretical long- run average leakage rate.  

Here, q p= −1 .

When applying CSP- 1, CSP- 2 or CSP- 3, we need to choose a sampling rate, f ,  

and one or more window sizes. The usual approach is to start with an acceptable 

leakage rate, r, and a range of plausible approach rates, [ , ]p p− + . Using the AOQ, 

we can then get a set of potential parameters. For example, for CSP- 3 we have

 S f g g p r p p pc a= ≤ ∈ − +{( , , ): ( ) [ , ]}.AOQ for all  

We can then choose parameters from S according to some secondary consideration 

such as minimising f  or gc. Unfortunately, this approach is very much dependent 
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on the value of p+ and can result in values of f  that are too small if  p+ is small or 

values of f  that are too large if  p+ is too large. If  f  is too small then the algorithm 

is too slow to respond to changes in p and we have no guarantee of the statistical 

value of the information gained from our inspections. If  f  is too large then we 

waste resources through unnecessary sampling.

Table 1.1. CSP- 1 algorithm

AOQ( ) =
(1 )

(1 )
p

p f q

f q +q

g

g g

−
−

Alertness 

state

Sampling 

rate

Window 

size

Up 

threshold

Up 

destination

Down 

threshold

Down 

destination

2 (census) 1 g 0 1

1 (sampling) f 1 1 2

From Dodge (1943).

Table 1.2. CSP- 2 algorithm

AOQ
(1 (2

(1 )(1 ) + (2
( )

) )

)
p

p f q q

f q q q q

g g

g g g g

c a

c a c a

=
− −

− − −

Alertness 

state

Sampling 

rate

Window 

size

Up 

threshold

Up 

destination

Down 

threshold

Down 

destination

3 (census) 1 gc 0 1

2 (alert) f ga 1 3 0 1

1 (sampling) f 1 1 2

From Dodge and Torrey (1951).

Table 1.3. CSP- 3 algorithm

AOQ p =
p f q q q

f q q q q

g g

g g + g

c a

c a c

( )
(1 ) (1+ (1 ))

(1 )(1 ) + (1 (1

4

4 4

− −
− − − − qq fpqg ga c)) + 4

Alertness 

state

Sampling 

rate

Window 

size

Up 

threshold

Up 

destination

Down 

threshold

Down 

destination

4 (census) 1 gc 0 1

3 (limbo) 1 4 1 4 0 2

2 (alert) f ga 1 4 0 1

1 (sampling) f 1 1 3

From Dodge and Torrey (1951).
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1.4.1 Combining IRIS and CSP

Our response to the problem of parameter selection for the CSP algorithm is to 

combine it with the IRIS algorithm. At the end of each review period, we choose 

f  using IRIS to achieve a given leakage rate, r, with a conidence of 100 1 0
0( )− α .  

Given f , we then choose the window sizes g , or ga and gc according to secondary 

considerations, which may be operational.

As before, we suppose that units arrive in blocks or review periods of size N1, N2,  

and so forth. Suppose that during period 1 we used a CSP algorithm with base 

sampling rate f1. (At any time k , the actual sampling rate, Sk , will be either f1 or 1.)  

Given that we observed x1 non- compliant units out of n1 units inspected during 

period 1, we can estimate n2 using IRIS as described in Section 1.3. The base sam-

pling rate for period 2 is then  f n N2 2 2= / .

For example, suppose that we wish to combine CSP- 1 and IRIS to determine 

an inspection algorithm for a given pathway. If  in the previous batch of N1 1000=  

units, n1 500=  were inspected and x1 1=  non- compliant units were found. The goal 

is to choose n2, the number of units to inspect from the next batch of size N2 1000= .  

We assume that we want the prediction distribution of the leakage rate to be lower 

than 1% with probability 0.95 and that the inspection effectiveness, w, is known to 

be 0.9. Solving Eq. 1.4 for n2 yields a sampling rate of s n N= =2 2 0 479/ . , which 

we round to 0.5. To choose the window length g  for the CSP- 1 algorithm, in the 

absence of any other criteria, we can use the formula for the AOQ given in Table 1.1. 

[Graphs of this function can be found in Dodge (1943).] Using the point estimate 

p x n= =1 1 1 500/ /  and f s= = 0 5.  from the preceding, we can choose g  to achieve 

the desired AOQ. For example, for an AOQ of less than 0.095%, the clearance num-

ber (window length) would be g = 0 5. .

Alternatively, in some circumstances the clearance number can be interpreted 

directly as a burden on the importer, representing a period of intense scrutiny dur-

ing which the importer needs to demonstrate proper compliance. Given this inter-

pretation, the magnitude could be chosen to relect expert opinion.

The IRIS algorithm is well suited to a slowly changing approach rate, with 

reviews at ixed points in time. It is not designed to continually monitor for a sud-

den increase in the approach rate, and it doesn’t have an automatic reaction if  this 

occurs. There is no need to monitor for a decrease in the approach rate under IRIS; 

we just wait until the next review point.

CSP algorithms provide an immediate measured response to any increase in the 

approach rate. CSP algorithms enable us to increase the sampling rate temporarily 

when there is a suspicion that the approach rate has increased, and then reduce it 

if  there is not a problem. Where the CSP algorithms have problems, however, is in  

the choice of parameters f  and g  (or ga and gc). Using the IRIS algorithm to 

choose f  means that we can choose g  (or ga and gc) safe in the knowledge that we 

have already controlled the expected leakage rate and how large it could reasonably 

be. We also know that our overall sampling rate will be large enough to ensure that 

we will continue to have a good estimate of the approach rate. In the example given 
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