Cambridge University Press 978-0-521-76562-6 - Molecular Engineering Thermodynamics Juan J. De Pablo and Jay D. Schieber Frontmatter More information

Molecular Engineering Thermodynamics

Building up gradually from first principles, this unique introduction to modern thermodynamics integrates classical, statistical, and molecular approaches, and is especially designed to support students studying chemical, biochemical, and materials engineering. In addition to covering traditional problems in engineering thermodynamics in the context of biology and materials chemistry, students are introduced to the thermodynamics of DNA, proteins, polymers, and surfaces.

It includes:

- Over 80 detailed worked examples, covering a broad range of scenarios such as fuel cell efficiency, DNA/protein binding, semiconductor manufacturing, and polymer foaming, emphasizing the practical real-world applications of thermodynamic principles.
- More than 300 carefully tailored homework problems, designed to stretch and extend students' understanding of key topics, accompanied by an online solution manual for instructors.
- All the necessary mathematical background, plus resources summarizing commonly used symbols, useful equations of state, microscopic balances for open systems, and links to useful online tools and datasets.

Juan J. de Pablo is the Liew Family Professor at the Institute for Molecular Engineering, University of Chicago, and a former Director of the Materials Science and Engineering Center on Structured Interfaces, University of Wisconsin, Madison. He has won several teaching awards, has been awarded a Presidential Early Career Award in Science and Engineering from the NSF, and is a Fellow of the APS, the American Academy of Arts and Sciences, and the Mexican Academy of Sciences.

Jay D. Schieber is Professor of Chemical Engineering in the Department of Chemical and Biological Engineering and the Department of Physics, and Director of the Center for Molecular Study of Condensed Soft Matter, at the Illinois Institute of Technology. He has been a visiting professor at universities in Europe and Asia, holds numerous teaching awards, and was the 2004 Hougen Scholar at the University of Wisconsin, Madison.

Cambridge University Press 978-0-521-76562-6 - Molecular Engineering Thermodynamics Juan J. De Pablo and Jay D. Schieber Frontmatter More information

Cambridge Series in Chemical Engineering

Series Editor Arvind Varma, Purdue University

Editorial Board

Christopher Bowman, University of Colorado Edward Cussler, University of Minnesota Chaitan Khosla, Stanford University Athanassios Z. Panagiotopoulos, Princeton University Gregory Stephanopoulos, Massachusetts Institute of Technology Jackie Ying, Institute of Bioengineering and Nanotechnology, Singapore

Books in Series

Baldea and Daoutidis, Dynamics and Nonlinear Control of Integrated Process Systems Chau, Process Control: A First Course with MATLAB Cussler, Diffusion: Mass Transfer in Fluid Systems, Third Edition Cussler and Moggridge, Chemical Product Design, Second Edition De Pablo and Schieber, Molecular Engineering Thermodynamics Denn, Chemical Engineering: An Introduction Denn, Polymer Melt Processing: Foundations in Fluid Mechanics and Heat Transfer Duncan and Reimer, Chemical Engineering Design and Analysis: An Introduction Fan and Zhu, Principles of Gas-Solid Flows Fox, Computational Models for Turbulent Reacting Flows Leal, Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Lim and Shin, Fed-Batch Cultures: Fundamentals, Modeling, Optimization, and Control of Semi-Batch Bioreactors Marchisio and Fox, Computational Models for Polydisperse Particulate and Multiphase Systems Mewis and Wagner, Colloidal Suspension Rheology Morbidelli, Gavriilidis, and Varma, Catalyst Design: Optimal Distribution of Catalyst in Pellets, Reactors, and Membranes Noble and Terry, Principles of Chemical Separations with Environmental Applications Orbey and Sandler, Modeling Vapor-Liquid Equilibria: Cubic Equations of State and their Mixing Rules Petyluk, Distillation Theory and its Applications to Optimal Design of Separation Units Rao and Nott, An Introduction to Granular Flow Russell, Robinson, and Wagner, Mass and Heat Transfer: Analysis of Mass Contactors and Heat Exchangers Schobert, Chemistry of Fossil Fuels and Biofuels Sirkar, Separation of Molecules, Macromolecules and Particles, Principles, Phenomena and Processes Slattery, Advanced Transport Phenomena Varma, Morbidelli, and Wu, Parametric Sensitivity in Chemical Systems

> "This is a book to use many times. First as a textbook that explains the principles of thermodynamics and statistical mechanics with rigour and clarity. The importance and the contemporary relevance of the subject matter is illustrated in many examples from physics, chemical engineering and biology – and it is to these examples that future readers are likely to return time and again. They illustrate how thermodynamics can be used as a framework to organize and quantify our understanding of an amazing variety of physical phenomena. A textbook to hold on to."

Daan Frenkel, University of Cambridge

"The book by Professors J. J. de Pablo and J. D. Schieber, titled *Molecular Engineering Thermodynamics*, is both sensible and innovative. They use a postulational approach to present the basic ideas of the subject, which, I believe, is the best way to teach equilibrium thermodynamics, since it is clear and concise. Their book is also important because they show how thermodynamics can be used to attack problems involving chemical reaction equilibria, properties of polymer solutions and blends, and surfaces and interfaces. They also make it clear how thermodynamics may be applied to engineering flow systems (which are not at equilibrium). A chapter on statistical mechanics shows how molecular ideas fit into the subject of thermodynamics."

R. Byron Bird, Univerity of Wisconsin-Madison

Molecular Engineering Thermodynamics

JUAN J. DE PABLO University of Chicago

JAY D. SCHIEBER Illinois Institute of Technology

www.cambridge.org

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9780521765626

© J. J. de Pablo and J. D. Schieber 2014

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2014 Reprinted 2014

Printed in the United States of America by Sheridan Books, Inc.

A catalog record for this publication is available from the British Library

Library of Congress Cataloging in Publication data
De Pablo, Juan J.
Molecular engineering thermodynamics / Juan J. de Pablo, University of Chicago, Jay D. Schieber,
Illinois Institute of Technology.
pages cm
ISBN 978-0-521-76562-6 (hardback)
1. Thermodynamics. 2. Chemical engineering. 3. Molecular dynamics. I. Schieber, Jay D. II. Title.
QD504.D423 2013
621.402'1-dc23

ISBN 978-0-521-76562-6 Hardback

Additional resources for this publication at www.cambridge.org/depablo

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

2013001919

To Marina, Clara, and Luis, and to Jennifer and Nathaniel

Cambridge University Press 978-0-521-76562-6 - Molecular Engineering Thermodynamics Juan J. De Pablo and Jay D. Schieber Frontmatter More information

CONTENTS

	Prefa	<i>page</i> xv	
	Ackı	xviii	
	Defi	nitions	xix
1	Intro	oduction	1
	1.1	Relevant questions for thermodynamics	2
	1.2	Work and energy	4
	Exer	cises	5
2	The	postulates of thermodynamics	7
	2.1	The postulational approach	7
	2.2	The first law: energy conservation	8
	2.3	Definition of heat	10
	2.4	Equilibrium states	15
	2.5	Entropy, the second law, and the fundamental relation	15
	2.6	Definitions of temperature, pressure, and chemical potential	22
	2.7	Temperature differences and heat flow	33
	2.8	Pressure differences and volume changes	35
	2.9	Thermodynamics in one dimension	37
	Sum	mary	40
	Exer	cises	41
3	Gen	eralized thermodynamic potentials	52
	3.1	Legendre transforms	53
	3.2	Extremum principles for the potentials	58
	3.3	The Maxwell relations	66
	3.4	The thermodynamic square	68
	3.5	Second-order coefficients	70
	3.6	Thermodynamic manipulations	78
	3.7	One- and two-dimensional systems	83
		3.7.1 A non-ideal rubber band	83
		3.7.2 Unzipping DNA	85
		3.7.3 Langmuir adsorption	90
	Sum	mary	96 97
Exercises			

х

Contents

4	First	t applic	cations of thermodynamics	112
	4.1	Stabil	ity criteria	112
		4.1.1	Entropy	113
		4.1.2	Internal energy	116
		4.1.3	Generalized potentials	116
	4.2	Single	e-component vapor–liquid equilibrium	118
		4.2.1	The spinodal curve of a van der Waals fluid	118
		4.2.2	The binodal (or coexistence) curve of a van der Waals fluid	122
		4.2.3	The general formulation	126
		4.2.4	Approximations based on the Clapeyron equation	127
	4.3	Crysta	allization of solids	128
	4.4	Therm	nodynamic diagrams	129
		4.4.1	Construction of fundamental relations from two equations	
			of state for single-component systems	131
		4.4.2	Residual properties	135
	Sum	mary		141
	Exer	cises		141
5	Ασρ	licatio	n to process design: flow systems	149
	5.1		oscopic mass, energy, and entropy balances	150
		5.1.1	The throttling process	154
		5.1.2	Specifications for a turbine generator	156
		5.1.3		158
		5.1.4	The Ranque–Hilsch vortex tube	159
		5.1.5	Fuel cells	162
	5.2	Cycle	S	166
		5.2.1	The Carnot cycle	167
		5.2.2	The Rankine power cycle	169
		5.2.3	The refrigeration cycle	173
	Sum	mary		177
	Exer	•		178
6	Stat	istical	mechanics	181
	6.1	Ensen	nble and time averages	181
	6.2		anonical ensemble	184
	6.3	Ideal		187
		6.3.1	A simple ideal gas	187
		6.3.2	A general ideal gas	190
	6.4		nuir adsorption	192
	6.5		rand canonical ensemble	194
	6.6	6		196
	6.7	Fluctu	ations	199

		Contents	xi
	Sum	mary	204
		cises	205
7	Mol	ecular interactions	211
	7.1	Ideal gases	211
	7.2	Intermolecular interactions	212
		7.2.1 The significance of " $k_{\rm B}T$ "	212
		7.2.2 Interactions at long distances	213
		7.2.3 Interactions at short distances	219
		7.2.4 Empirical potential-energy functions	220
		7.2.5 Hydrogen bonds	224
	7.3	Molecular simulations	225
	7.4	The virial expansion	227
	7.5	Equations of state for liquids	230
	7.6	Experimental manifestations of intermolecular interactions	231
		clusions	235
	Exer	cises	236
8	-	acity and vapor–liquid equilibrium	246
	8.1	General equations of phase equilibria	247
	8.2	Mixtures of ideal gases	247
	8.3	Mixtures: partial molar properties	249
		8.3.1 Definition of a partial molar property	249
		8.3.2 General properties of partial molar quantities	251
		8.3.3 Residual partial molar quantities	255
	8.4	Fugacity	257
		8.4.1 Definition of fugacity	257
		8.4.2 Properties of fugacity	258
		8.4.3 Estimating the fugacity of a pure vapor or liquid	259
	8.5	Calculation of fugacity coefficients of mixtures from <i>PVT</i> equations of state	263
	8.6	Fugacity in ideal or Lewis mixtures	267
		8.6.1 Lewis mixing	267
		8.6.2 Properties of Lewis (ideal) mixtures	268
	0.7	8.6.3 A simple application of Lewis (ideal) mixing: Raoult's law	270
	8.7	Solubility of solids and liquids in compressed gases	271
		8.7.1 Phase equilibria between a solid and a compressed gas	271
	C	8.7.2 Phase equilibria between a liquid and a compressed gas	272
		mary	273
	Exer	cises	275
9	Acti	vity and equilibrium	282
	9.1	Excess properties and activities	282
	9.2	A summary of fugacity and activity	285

xii	Conte	nts	
	9.3	Correlations for partial molar excess Gibbs free energy	286
		9.3.1 Simple binary systems	286
		9.3.2 Thermodynamic consistency	291
	9.4	Semi-theoretical expressions for activity coefficients	292
		9.4.1 The van Laar equation	293
		9.4.2 Wilson's equation	293
		9.4.3 The NRTL equation	294
		9.4.4 The UNIQUAC model	295
	9.5	Dilute mixtures: Henry's constants	296
	9.5.1 Measurement of activity coefficients		299
	9.6	The blood-brain barrier	303
	9.7	Partial miscibility	305
		9.7.1 Thermodynamic stability	305
		9.7.2 Liquid–liquid equilibria in ternary mixtures	310
		9.7.3 Critical points	311
	9.8	Simple free-energy models from statistical mechanics	313
		9.8.1 Lewis mixing	314
		9.8.2 The Margules model	315
		9.8.3 Exact solution of the lattice model	316
	Sumn	•	316
	Exerc	ises	317
10	Reac	tion equilibrium	328
	10.1	A simple picture: the reaction coordinate	328
	10.2	Extent of reaction	330
	10.3	The equilibrium criterion	332
	10.4	The reaction equilibrium constant	333
	10.5	Standard property changes	334
	10.6	Estimating the equilibrium constant	335
	10.7	Determination of equilibrium compositions	340
	10.8	Enzymatic catalysis: the Michaelis-Menten model	342
	10.9	Denaturation of DNA and polymerase chain reactions	343
		10.9.1 Denaturation	344
		10.9.2 Polymerase chain reaction	346
	10.10	Statistical mechanics of reactions and denaturation	347
		10.10.1 Stochastic fluctuations in reactions	347
		10.10.2 DNA denaturation	353
	Sumn	nary	355
	Exerc	ises	356
11	Ther	modynamics of polymers	365
	11.1	Solubility and miscibility of polymer solutions	365
	11.2	Generalizations of the Flory–Huggins theory	370

Cambridge University Press
978-0-521-76562-6 - Molecular Engineering Thermodynamics
Juan J. De Pablo and Jay D. Schieber
Frontmatter
More information

		Contents	xiii
		11.2.1 The generalization of Qian <i>et al.</i>	370
		11.2.2 The Sanchez–Lacombe equation of state	374
		11.2.3 The BGY model	380
	11.3	Block copolymers	383
	11.4	Derivation of the Flory–Huggins theory	386
	Sum	-	390
	Exerc	cises	390
12	Ther	modynamics of surfaces	393
	12.1	The interfacial tension of a planar interface	393
	12.2	The Gibbs free energy of a surface phase and the Gibbs–Duhem relation	395
	12.3	Curved interfaces	396
	12.4	Solid-liquid interfaces: wetting	401
	12.5	Capillary forces	403
	12.6	Solid-gas interfaces: adsorption	409
	12.7	The temperature dependence of surface tension	410
	12.8	Interfaces in mixtures	411
		12.8.1 Vapor–liquid interfaces	412
		12.8.2 Monolayer formation on liquid surfaces	416
	Sum	•	419
	Exerc	cises	420
	Арр	endix A Mathematical background	426
	A.1	Taylor's series expansion	426
	A.2	The chain rule	427
	A.3	Jacobian transformations	429
	A.4	The fundamental theorem of calculus	431
	A.5	Leibniz's rule	431
	A.6	The Gauss divergence theorem	432
	A.7	Solutions to cubic equations	432
	A.8	Combinatorics	434
		A.8.1 The binomial theorem	434
		A.8.2 The multinomial theorem	435
	Appendix B Fluid equations of state		437
	B.1	A general ideal gas	437
	B.2	The virial equation of state	438
	B.3	The van der Waals fluid	440
	B.4	The Carnahan–Starling equation of state	441
	B.5	The Redlich–Kwong equation of state	442
	B.6	The Peng–Robinson equation of state	444
	B.7	Martin's generalized cubic equation of state	445

xiv

Contents

B.8	The Benedict–Webb–Rubin equation of state	446		
B.9	The Anderko–Pitzer equation of state	447		
Арро	endix C Microscopic balances for open systems	451		
C .1	Mass: the continuity equation			
C.2	Momentum: the equation of motion	453		
C.3	Energy: the microscopic energy balance	454		
C.4	Entropy: the microscopic entropy balance	455		
C.5	Entropy flux and generation in laminar flow	458		
Ann	andix D. Dhysical properties and references	461		
••	, , , , , , , , , , , , , , , , , , ,	461		
D.1	Websites with data and programs	461		
D.2	Entropy and properties of formation	462		
D.3	Physical constants	468		
D.4	Steam tables	469		
Dofor	707 000	470		
Index				
	B.9 App C.1 C.2 C.3 C.4 C.5 App D.1 D.2 D.3 D.4 Refer	 B.9 The Anderko–Pitzer equation of state Appendix C Microscopic balances for open systems C.1 Mass: the continuity equation C.2 Momentum: the equation of motion C.3 Energy: the microscopic energy balance C.4 Entropy: the microscopic entropy balance C.5 Entropy flux and generation in laminar flow Appendix D Physical properties and references D.1 Websites with data and programs D.2 Entropy and properties of formation D.3 Physical constants		

PREFACE

Students of engineering and the physical sciences are often introduced to thermodynamics in a way that has evolved little over the last several decades.

This book is an outgrowth of the sense that thermodynamics courses should reflect changes in the problems that engineers and scientists encounter in practice. Important industrial sectors, including the oil, chemical, semiconductor, and pharmaceutical, continue to recruit large numbers of scientists and engineers, but new demands require them to be more versatile, and able to apply fundamental thermodynamic concepts in a wider range of situations. At the same time, start-ups in emerging fields must be nimble and rely on a work force that is equally comfortable applying thermodynamic principles to rationalize observations in biology or advanced materials design. Traditional boundaries between science and engineering are becoming blurred, and versatility in engineering is necessarily built on a broader understanding of far-reaching scientific principles. Engineering students must place greater emphasis on broadly applicable scientific concepts and learn how to use these in different contexts, and students in the sciences must gain a better appreciation for how such concepts are applied in engineering practice.

One clear and common trend in most engineering and scientific disciplines is that of control over smaller length scales. Experimental methods are able to probe and manipulate the behavior of individual molecules, and large-scale processes can be used to mass produce ultra-small electronic devices. We have entered the age of "molecular engineering," and it is important to emphasize molecular-level concepts in thermodynamics texts.

This manuscript grew out of a set of lecture notes that, with the help of our students and colleagues, we assembled over the last decade. It was originally inspired by the texts and papers that we learned from and, over the course of time, the original content was re-organized in a manner that became easier to deliver in a classroom setting. As we taught and re-taught our thermodynamics courses, we had an opportunity to collect a wide variety of examples of applications of thermodynamics from different disciplines. While we have tried to acknowledge all of the original sources from which ideas and content were taken, we have been influenced by more researchers than we could know. We offer our deepest apologies to any authors who may have inadvertently been omitted from our list of references, and welcome any suggested corrections. Thermodynamics is a mature subject, and we do not make any claims to present in this text a new or original interpretation.

In teaching a two-semester undergraduate sequence, as well as our own graduate courses, we also had ample occasion to realize which concepts students could fully appreciate and remember and which ones they could not. At times, we experienced a fear of reprisal at the mere mention of entropy. Our lecture notes gradually evolved into a postulatory presentation of thermodynamics that allowed us to transition between different aspects and applications

xvi

Cambridge University Press 978-0-521-76562-6 - Molecular Engineering Thermodynamics Juan J. De Pablo and Jay D. Schieber Frontmatter More information

Preface

of thermodynamics without having to re-introduce some of the underlying principles. Outlining the geometrical framework of thermodynamics from the beginning made it easier to later exploit its consequences in a wide range of applications. Thermodynamic stability, colligative properties, phase equilibria, or adsorption at surfaces and interfaces could all be introduced in a seamless manner, always starting from a common approach. Also examples ranging from the entropy loss associated with polymer stretching to the extraction of heavy molecules using super-critical fluids could be more easily discussed within the same sequence of lectures.

At our own institutions, we have used the text in a two-semester sequence for undergraduate students, or for a one-semester course for graduate students. In the past, the text has been used by chemical and biological engineers, biomedical engineers, materials scientists, and chemists. Particular attention has been devoted to illustrating new concepts with examples from various disciplines, ranging from chemistry to physics and biology.

Our presentation of thermodynamics has been heavily influenced by Callen's classic text. Our manuscript begins with the statement of three postulates in Chapter 2. These postulates are then used to introduce the concept of thermodynamic surfaces, and the minimization (or maximization) of thermodynamic potentials in Chapter 3. Examples of our non-traditional approach to engineering thermodynamics are illustrated with the manipulation of individual DNA molecules using optical tweezers and the adsorption of protein molecules onto surfaces. Chapter 4 is devoted to thermodynamic stability and its consequences. These ideas are subsequently built upon to analyze thermodynamic processes, such as cycles, turbines, and fuel cells. Our discussion of such processes is necessarily more concise than that encountered in traditional engineering texts. If needed, that material can be supplemented with examples already available in the literature. This five-chapter introduction to classical thermodynamics is followed by a chapter on statistical mechanics, in which a connection is made between the thermodynamic potentials introduced earlier and the behavior of collections of molecules. The presentation of statistical mechanics can be facilitated considerably by relying on software for molecular simulations that is widely available online. This is also the chapter in which the idea of fluctuations is introduced, a subject of importance in small, especially biological, systems.

The introduction to statistical mechanics is followed by a chapter on the nature and origin of intermolecular forces that serves to establish a link between chemistry, structure, and the ensuing thermodynamic behaviour. The subsequent two chapters are devoted to a discussion of phase equilibria in a wide variety of contexts, including systems comprising gas, liquid, and solid phases. Our presentation is based on the texts by Prausnitz et al. and by Sandler. Concepts from phase equilibria are illustrated with examples ranging from super-critical extraction to the modeling of the blood–brain barrier through water–octanol partitioning. Chapter 10 is devoted to chemical equilibria and the study of reacting systems. The examples that are discussed range from reactions encountered in semiconductor manufacturing to biotechnology processes (e.g., polymerase chain reaction). Simple stochastic concepts are introduced for the study of fluctuations in small reaction volumes. Although polymers are introduced throughout the text in earlier examples, Chapter 11 is devoted to polymer solubility, including copolymers and the compressibility that arises with super-critical solvents, as used in foaming. Chapter 12 is devoted to the thermodynamics of surfaces, and builds on the original introduction by

Preface

xvii

Guggenheim with examples related to the characteristics of super-hydrophobic surfaces and the collapse of nanoscopic structures encountered in nano-lithographic processes.

There are four appendices. The first appendix reviews all the mathematical background necessary for the manipulations in the text above algebra. The text makes extensive use of partial differentiation, Taylor-series expansion, the chain rule, Jacobian transformations, and Leibniz's rule; all students are expected to have proficiency in these tools. For completeness, the Gauss divergence theorem is included, but it is essential only for a later appendix. The cubicequation solutions are useful for numerical work in single-component vapour–liquid stability predictions, whereas combinatorics is an essential tool in statistical-mechanical calculations. Appendix B summarizes all key information about several equation-of-state models for pure systems. Appendix C derives the microscopic balances from first principles. These derivations make a strong connection with the subject of transport phenomena and provide the basis for all flowing-system analyses considered in Chapter 5. The final appendix provides a small amount of physical data necessary for performing calculations using the sorts of models presented in Appendix B. Much more complete physical data are obtainable online, or from software.

Thermodynamics is a mature, large discipline, yet its application is found in an ever-growing number of problems. A single textbook cannot be expected to cover all that important ground. This book is intended to give students a broader flavor of the subject than they might otherwise experience. We expect that this text will require continuous adaptation to our changing discipline. However, we believe that the approach taken here is sufficiently robust to facilitate incorporation of new challenges and inclusion of new topics, and is appropriate for introductory or intermediate-level courses in the sciences and engineering disciplines.

Cambridge University Press 978-0-521-76562-6 - Molecular Engineering Thermodynamics Juan J. De Pablo and Jay D. Schieber Frontmatter More information

ACKNOWLEDGMENTS

We are indebted to the many students at Wisconsin and Illinois who suffered through our courses in thermodynamics and who worked with us on this text. We have benefited considerably from the advice of many of our colleagues, who have patiently worked through earlier versions of this text and used it in their lectures. We are grateful to the Department of Chemical and Biological Engineering at the University of Wisconsin for the award of a Hougen Fellowship; that fellowship allowed Jay Schieber to spend a semester in Madison, during which some of the material in this text was developed. Juan de Pablo is grateful for the Howard Curler Distinguished Professorship; without that professorship it would have been difficult to complete this text. Juan de Pablo would like to thank the Department of Chemical and Biological Engineering at the University of Wisconsin for providing a collegial and scholarly environment in which to launch an academic career. We are also grateful to our new colleagues at the University of Chicago for creating a stimulating atmosphere that will undoubtedly nurture the development of the nascent field of molecular engineering.

Specifically, we thank Professor Hamid Arastoopour for supporting the time spent on this project during his tenure as Chairman at IIT, and Professors Samira Azarin, Rafael Chavez, Horacio Corti, Fernando Escobedo, David Gidalevitz, Juan Pablo Hernandez, Thomas Knotts, Manos Mavrikakis, Paul Nealey, Jai Prakash, Rob Riggleman, Rob Selman, Eric Shusta, Amadeu Sum, Igal Szleifer, and David Venerus, who were brave enough to test drive the text during its development. Bob Bird and Charlie Hill provided invaluable advice and were always willing to share their views of thermodynamics and of what a textbook should be like. Several students went well beyond the call of duty in helping us prepare many of the examples and problems presented in this manuscript, including Manan Chopra, Ami Desai, Lisa Giammona, Bill Mustain, Deepa Nair, Thidaporn Kitkrailard, Ekaterina Pilyugina, Andrew Spakowitz, Jian Qin, Sadanand Singh, Rebeccah Stay, and Umaraj Saberwal, who provided feedback, helped develop exercises or examples, or worked on exercise solutions.

DEFINITIONS

Symbol	Name	Where introduced or defined
Α	Area	Fundamental
A_{chain}	Cross-sectional area per chain	Eqn. (11.53)
а	Parameter in several models	
a_i	Activity of species <i>i</i>	Eqn. (9.6), p. 283
$A_{\rm s}$	Cross-sectional area	p. 151
A_0, A_1, \ldots	Constants	
a_0	Parameter in various models	
a_{K}	Kuhn step length	Eqn. (2.84), p. 49
b	Parameter in various models	
C(T)	Heat capacity	Eqns. (3.16)
С	Parameter in various models	
C_L, c_L	Constant-length heat capacity	Eqn. (3.97), p. 83
C_P, c_P	Constant-pressure heat capacity	Eqn. (3.62), p. 70
C_V, c_V	Constant-volume heat capacity	Eqn. (3.84), p. 80
c_i	Molar concentration of species <i>i</i>	Section C.1 of Appendix C
E	Electric field	
$E_{\rm tot}$	Total energy of system	Eqn. (5.5), p. 151
$ec{F}$	Force	Fundamental, p. 4
F	Helmholtz potential	Eqn. (3.10), p. 55
f	Specific Helmholtz potential	:= F/N
f.	Fugacity	Eqn. (8.41), p. 258
f_i^{μ} pure	Fugacity of pure component	Eqn. (8.41), p. 258
F_0	Helmholtz potential at	
	reference state	
F^{R}	Residual Helmholtz potential	Eqn. (4.66), p. 136
\vec{g}	Gravitational vector	Fundamental, Table D.5, p. 468
g	Specific Gibbs free energy	:= G/N
G	Gibbs free energy	Eqn. (3.11), p. 55
G_0	Gibbs free energy at reference state	
G^{R}	Residual Gibbs free energy	Eqn. (4.66), p. 136
U H	Enthalpy	Eqn. (3.9), p. 55
ħ	Reduced Planck constant	Fundamental, Table D.5, p. 468
h h	Specific enthalpy	:= H/N
H_0	Enthalpy at reference state	
\vec{J}_i	Molar flux of species <i>i</i>	Section C.1 of Appendix C
H^{R}	Residual enthalpy	Eqn. (4.66), p. 136
11	Residual chalapy	Equ. (7.00), p. 150

хх	Definitions		
	k	Thermal conductivity	
	$k_{\rm B}$	Boltzmann constant	$:= R/\tilde{N}_{A},$
			Eqn. (2.20), p. 20
	K _{tot}	Total kinetic energy of system	Eqn. (5.6), p. 151
	l	Distance	
	L	Length (of elastic strand)	Fundamental
	L_0	Length at reference state	
	$l_{\rm p}$	Persistence length	Eqn. (2.85), p. 50
	log	Natural logarithm	$:= \int_1^x (1/x) dx, \exp(\log x) = x$
	\log_{10}	Logarithm base 10	$10^{(\log_{10} x)} = x$
	т	mass	
	$\bar{m}_i, m = v, s, g, \ldots$	Partial molar property	Eqn. (8.8), p. 251
	$M_{ m s}$	Moles of adsorption sites	Eqn. (3.109), p. 90
	$M_{ m tot}$	Total mass of system	Section 5.1
	'n	Mass flow rate	
	$M_{ m w}$	Molecular weight	
	$M_{ m E}$	Excess property	Eqn. (9.2), p. 283
	n	Unit normal vector	Eqn. (5.7), p. 152
	N_i	Mole number of species <i>i</i>	Fundamental, p. 15
	$N_{ m K}$	Number of Kuhn steps	Eqn. (2.84), p. 49
	$N_{ m p}$	Number of persistence	Eqn. (2.85), p. 50
		lengths	
	Р	Pressure	Eqn. (2.24), p. 23
	p_j	Probability of being	Eqn. (6.14), p. 186
	5	in microstate <i>j</i>	
	P_0	Pressure at reference state	
	P _s	Spinodal pressure	Section 4.2.1
	P _c P ^{sat}	Critical pressure	Section 4.2.1
	-	Saturation pressure Heat	Section 4.2.2 Eq. $(2, 1) = 10$
	$\begin{array}{c} Q \\ Q \end{array}$	Canonical-ensemble partition function	Eqn. (2.1), p. 10
	. –	Single-site partition function	Eqn. (6.13), p. 186
	$q_{\rm site}(T)$	Charge of species <i>i</i>	Eqn. (3.109), p. 90 Chapter 7
	q_i	Molecule-pair partition function	p. 313
	q _{ij} R	Ideal-gas constant	Fundamental,
	R	Ideal gas constant	Table D.5, p. 468
	r	Number of species	p. 17
	R_i	Reaction rate of species <i>i</i>	Section C.1 of Appendix C
	S	Entropy	p. 17, defined in
	-		Eqn. (2.20), p. 20
	S	Specific entropy	:= S/N
	S_0	Entropy at reference state	,
	S ^R	Residual entropy	Eqn. (4.66), p. 136
	$S_{ m tot}$	Total entropy of system	Eqn. (5.10), p. 152
	T	Temperature	Eqn. (2.25), p. 23
	T_0	Temperature at reference state	

Definitions

Т		Section 4.2.1
T _s	Spinodal temperature	Section 4.2.1
$T_{\rm c}$	Critical temperature	Section 4.2.1
\mathcal{T}	Tension	Eqn. (2.72), p. 37
U	Internal energy	Fundamental, p. 9
u	Specific internal energy	:= U/N
U_j	Energy of microstate <i>j</i>	p. 184
U_0	Internal energy at reference state	
$U_{\rm tot}$	Total internal energy of system	Eqn. (5.6), p. 151
U^{R}	Residual internal energy	Eqn. (4.66), p. 136
V	Volume	Fundamental, p. 5
υ	Specific volume	:= V/N
V_0	Volume at reference state	
\vec{v}	Velocity	$:= d\vec{r}/dt$, p. 4
V^{R}	Residual volume	Eqn. (4.66), p. 136
v_c	Critical volume	Section 4.2.1
$v_{ m v}$	Vapor volume	Section 4.2.2
v_1	Liquid volume	Section 4.2.2
\overline{v}_i^∞	Partial molar volume at infinite	Eqn. (8.90)
ι	dilution for species <i>i</i>	1 ()
W	Work	Eqn. (1.1), p. 4
X	Unconstrained variable	Eqn. (3.23), p. 59
z	Compressibility factor	Eqn. (4.28), p. 121
Zc	Critical compressibility factor	Section 4.27
$\Delta g_{\rm b}$	Base-pair denaturation	Eqn. (3.102), p. 87
$\Delta h_{\rm b}$	Base-pair denaturation	Eqn. (3.102), p. 87
$\Delta s_{\rm b}$	Base-pair denaturation	Eqn. (3.102), p. 87
đ	Imperfect differential	p. 10
λ	Unspecified generic constant	P
β	Parameter in various models	
$\delta(i,j)$ or δ_{ij}	Kronecker delta function	$:= \begin{cases} 1, & i=j\\ 0, & i\neq j \end{cases}$
γ	Parameter in various models	
γi	Activity coefficient	Eqn. (9.7), p. 283
ϕ	Fugacity coefficient	Eqn. (8.42), p. 258
Ω	Number of microstates	Eqn. (2.20), p. 20
$\mu^{ m d}$	Dipole moment	Chapter 7
μ_i	Chemical potential of species <i>i</i>	Eqn. (2.26), p. 23
μ°	Chemical potential under ideal conditions	Eqn. (3.112), p. 92
\mathcal{T}	Tension	Eqn. (2.72), p. 37
ψ, ψ_1, ψ_2	Various functions	
П	Osmotic pressure	p. 302
α	Coefficient of thermal expansion	Eqn. (3.60), p. 70
α^{p}	Polarizability	p. 217
κ _T	Isothermal compressibility	Eqn. (3.61), p. 70
κ _S	Isentropic compressibility	Eqn. (3.123), p. 102
ϵ_0	Permittivity of vacuum	Chapter 7
U U		

xxii	Definitions		
	$\epsilon_{\mathrm{a}},\epsilon_{\perp},\epsilon_{\parallel}$	Langmuir adsorption parameters	Eqn. (3.110), p. 91
	х	Flory–Huggins interaction parameter	Eqn. (3.115), p. 92
	Ψ	Grand canonical potential	Eqn. (6.47), p. 195
	θ	Fraction of filled sites,	$:= N/M_{\rm s},$
	$ heta_{\mathrm{i}}$	Langmuir Angle of orientation between two dipoles	Eqn. (3.111), p. 92
	$\Delta h^{ m vap}$	Heat of vaporization	Eqn. (4.47), p. 128
	$\Phi_{\rm tot}$	Total potential energy of system	Eqn. (5.6), p. 151
	$\vec{ abla}$	Vector differential operator	Eqn. (C.6), p. 452
	ho ho ho	Mass or molar density Number density of molecules	Appendix C
	$\vec{\tau}$	Stress tensor	Eqn. (C.9), p. 453
	$\eta_{ m s}$	Newtonian viscosity	Eqn. (C.9), p. 453
	D/Dt	Substantial derivative	Eqn. (C.11), p. 453
	ϵ	Non-equilibrium energy density	Eqn. (C.15), p. 454
	\vec{q}	Heat-flux vector	Section C.3 of Appendix C
	Φ_v	Newtonian dissipation function	Eqn. (C.18), p. 455
	$\sigma_{\alpha}, \alpha = hf, mf, sw, r$	Entropy creation rates (densities)	Eqn. (C.29), p. 458
	$\sigma_M, M = U, N, V$	Fluctuation variance	Eqn. (6.63), p. 200
	$\Sigma_{\alpha}, \alpha = \text{hf, mf, sw, r}$ Δ	Entropy-creation rates Changes in quantity (equilibrium)	Eqn. (5.8), p. 152
	Δ	Difference in exit (equilibrium) minus inlet (flow)	Eqn. (5.2), p. 150
	Δ	Grand canonical partition function	Eqn. (6.46), p. 194
	η	Efficiency	Eqn. (5.49), p. 163
	ε	Coefficient of performance	Eqns. (5.53) and (5.54)
	Λ	De Broglie wavelength	Eqn. (6.24)
	ω	Acentric factor	Eqn. (B.7)
	ω_d	Degeneracy	p. 313

Definitions xxiii

Ξ	Grand canonical partition	Eqn. (6.47), p. 195
Ψ	Generalized potential	p. 195
v_0	Electronic frequency of	p. 217
	molecule	
σ, ϵ	Lennard–Jones parameters	p. 220
$\langle \dots \rangle$	Average	Eqns. (6.63) and (8.3),
		pp. 200, 248
:=	"is defined as"	